[1] S. Knoche, M. Heid, N. Gora, D. Ohlig, A. Drochner, C. Hess, B. Etzold, H. Vogel, Mechanistic study on the selective oxidation of acrolein to acrylic acid:identification of the rate-limiting step via perdeuterated acrolein, Chemcatchem 11(14) (2019) 3242-3252. [2] B. Narupai, J. Willenbacher, M.W. Bates, S.M. Barbon, R.B. Zerdan, A.J. Mcgrath, I.H. Lee, A. Anastasaki, E.H. Discekici, D.S. Laitar, A.K. Van Dyk, T.H. Kalantar, J.M. Ren, C.J. Hawker, Low-temperature, rapid copolymerization of acrylic acid and sodium acrylate in water, J. Polym. Sci. A Polym. Chem. 57(13) (2019) 1414-1419. [3] W. Luo, J. Cai, L. Zhu, X. Zhu, L. Huang, Z. Xu, P. Cen, Toxic effects of acrylic acid on Clostridium propionicum and isolation of acrylic acid-tolerant mutants for production of acrylic acid, Eng. Life Sci. 12(5) (2012) 567-573. [4] M. Buback, L. Wittkowski, S.A. Lehmann, F. Mähling, High-pressure free-radical copolymerization of ethene-methacrylic acid and of ethene-acrylic acid, 1. (Meth) acrylic acid reactivity ratios, Macromol. Chem. Phys. 200(8) (1999) 1935-1941. [5] Z. Liu, T. Liu, Production of acrylic acid and propionic acid by constructing a portion of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula in Escherichia coli, J. Ind. Microbiol. Biotechnol. 43(12) (2016) 1659-1670. [6] F.M. Silva, E.L. Lima, J.C. Pinto, Acrylic acid/vinyl acetate suspension copolymerizations. I. Partition coefficients for acrylic acid, J. Appl. Polym. Sci. 93(3) (2004) 1077-1088. [7] M. Kim, H. Lee, Highly selective production of acrylic acid from glycerol via two steps using Au/CeO2 catalysts, ACS Sustain. Chem. Eng. 5(12) (2017) 11371-11376. [8] D. Sun, Y. Yamada, S. Sato, W. Ueda, Glycerol as a potential renewable raw material for acrylic acid production, Green Chem. 19(14) (2017) 3186-3213. [9] R.K. Grasselli, F. Trifirò, Acrolein and acrylic acid from biomass, Rendiconti Lincei 28(S1) (2017) 59-67. [10] A. Li, N. Dong, M. He, T. Pan, Evaluation of performance in a combined UASB and aerobic contact oxidation process treating acrylic wastewater, Environ. Technol. 36(7) (2015) 807-814. [11] V. Bednarik, M. Vondruska, Removal of formaldehyde from acrylic acid production wastewater, Environ. Eng. Sci. 20(6) (2003) 703-707. [12] J. Liu, T. Ni, J. Liu, B. Shen, Preparation of high-purity normal hexane from reformate raffinate by adsorption and distillation processes, Adsorpt. Sci. Technol. 32(6) (2014) 489-497. [13] Y.J. Min, S.W. Baek, J.H. Song, J.Y. Kim, Recovery of (meth)acrylic acid involves contacting mixed gas containing (meth)acrylic acid, organic by-products with water in absorption tower, and contacting aqueous acrylic acid solution with extraction solvent and distilling, WO Pat. 2018097516(2018). [14] M.J. Claus, K.A. Berglund, Fruit brandy production by batch column distillation with reflux, J. Food Process Eng. 28(1) (2005) 53-67. [15] I.P. Sizeneva, V.A. Val'Tsifer, V.N. Strel'Nikov, Concentration of trace amounts of butyl alcohol, butyl acrylate, and acrylic acid from water by distillation, Russ. J. Appl. Chem. 80(4) (2007) 582-585. [16] B.C. Ricci, C.D. Ferreira, L.S. Marques, S.S. Martins, B.G. Reis, M.C.S. Amaral, Assessment of the chemical stability of nanofiltration and reverse osmosis membranes employed in treatment of acid gold mining effluent, Sep. Purif. Technol. 174(2017) 301-311. [17] S. Bártová, P. Kůs, M. Skala, K. Vonková, Reverse osmosis for the recovery of boric acid from the primary coolant at nuclear power plants, Nucl. Eng. Des. 300(2016) 107-116. [18] S. Suwal, J. Li, A.S. Engelberth, J. Huang, Application of electro-membrane separation for recovery of acetic acid in lignocellulosic bioethanol production, Food Bioprod. Process. 109(2018) 41-51. [19] H. Ryu, Y. Kim, Y. Wee, Influence of operating parameters on concentration and purification of L-lactic acid using electrodialysis, Biotechnol. Bioproc. E. 17(6) (2012) 1261-1269. [20] T. Scarazzato, Z. Panossian, J.A.S. Tenório, V. Pérez-Herranz, D.C.R. Espinosa, A review of cleaner production in electroplating industries using electrodialysis, J. Clean. Prod. 168(2017) 1590-1602. [21] H. Manchanda, M. Kumar, Study of water desalination techniques and a review on active solar distillation methods, Environ. Prog. Sustain. 37(1) (2018) 444-464. [22] X. Chen, Y. Jiang, S. Yang, J. Pan, R. Yan, B.V.D. Bruggen, A. Sotto, C. Gao, J. Shen, Internal cross-linked anion exchange membranes with improved dimensional stability for electrodialysis, J. Membr. Sci. 542(2017) 280-288. [23] Y. Jia, F. Li, X. Chen, M. Wang, Model analysis on electrodialysis for inorganic acid recovery and its experimental validation, Sep. Purif. Technol. 190(2018) 261-267. [24] J. Khan, B.P. Tripathi, A. Saxena, V.K. Shahi, Electrochemical membrane reactor:In situ separation and recovery of chromic acid and metal ions, Electrochim. Acta 52(24) (2007) 6719-6727. [25] T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, Separation of copper ions by electrodialysis using Taguchi experimental design, Desalination 169(1) (2004) 21-31. [26] C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment:a review, J. Environ. Chem. Eng. 5(3) (2017) 2782-2799. [27] E. Serre, E. Rozoy, K. Pedneault, S. Lacour, L. Bazinet, Deacidification of cranberry juice by electrodialysis:impact of membrane types and configurations on acid migration and juice physicochemical characteristics, Sep. Purif. Technol. 165(2016) 222-223. [28] M. Bdiri, L. Dammak, C. Larchet, F. Hellal, M. Porozhnyy, E. Nevakshenova, N. Pismenskaya, V. Nikonenko, Characterization and cleaning of anion-exchange membranes used in electrodialysis of polyphenol-containing food industry solutions; comparison with cation-exchange membranes, Sep. Purif. Technol. 210(2019) 636-650. [29] S. Suwal, C. Roblet, A. Doyen, J. Amiot, L. Beaulieu, J. Legault, L. Bazinet, Electrodialytic separation of peptides from snow crab by-product hydrolysate:effect of cell configuration on peptide selectivity and local electric field, Sep. Purif. Technol. 127(2014) 29-38. [30] B.K. Pramanik, L. Shu, V. Jegatheesan, A review of the management and treatment of brine solutions, Environ. Sci. Water Res. Technol. 3(4) (2017) 625-658. [31] A. Campione, L. Gurreri, M. Ciofalo, G. Micale, A. Tamburini, A. Cipollina, Electrodialysis for water desalination:a critical assessment of recent developments on process fundamentals, models and applications, Desalination 434(2018) 121-160. [32] X. Zhang, C. Li, Y. Wang, J. Luo, T. Xu, Recovery of acetic acid from simulated acetaldehyde wastewaters:bipolar membrane electrodialysis processes and membrane selection, J. Membr. Sci. 379(1-2) (2011) 184-190. [33] R.K. Nagarale, G.S. Gohil, V.K. Shahi, G.S. Trivedi, S.K. Thampy, R. Rangarajan, Studies on transport properties of short chain aliphatic carboxylic acids in electrodialytic separation, Desalination 171(2) (2005) 195-204. [34] G. Esposito, K.A. Schaefer, Gas chromatographic determination of acetic acid in industrial atmosphere and waste water, Am. Ind. Hyg. Assoc. J. 37(5) (1976) 268-273. [35] M. Wang, J. Wang, Y. Chong, Simultaneous quantification of methanol and ethanol in alcoholic beverage using a rapid gas chromatographic method coupling with dual internal standards, Food Chem. 86(4) (2004) 609-615. [36] M. Namdari, T. Kikhavani, S.N. Ashrafizadeh, B. Van der Bruggen, Improvements in heterogeneous cation exchange membranes by incorporation of Fe2O3 nanoparticles, Ionics 25(10) (2019) 4953-4968. [37] M.I. Khan, M. Khraisheh, F. Almomani, Fabrication and characterization of pyridinium functionalized anion exchange membranes for acid recovery, Sci. Total Environ. 686(2019) 90-96. [38] C. Cheng, Z. Yang, J. Pan, B. Tong, T. Xu, Facile and cost effective PVA based hybrid membrane fabrication for acid recovery, Sep. Purif. Technol. 136(2014) 250-257. [39] M. Padaki, A.M. Isloor, P. Wanichapichart, A.F. Ismail, Preparation and characterization of sulfonated polysulfone and N-phthloyl chitosan blend composite cationexchange membrane for desalination, Desalination 298(2012) 42-48. [40] L. Wu, Y. Zhao, L. Ge, Z. Yang, C. Jiang, T. Xu, One-pot preparation of anion exchange membranes from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) for electrodialysis, Chem. Eng. Sci. 135(2015) 526-531. [41] G. Lee, Effects of operating parameters on the removal performance of electrodialysis for treating wastewater containing cadmium, Desalin. Water Treat. 35(2011) 150-157. [42] C. Huang, T. Xu, Y. Zhang, Y. Xue, G. Chen, Application of electrodialysis to the production of organic acids:state-of-the-art and recent developments, J. Membr. Sci. 288(1-2) (2007) 1-12. [43] V. Hábová, K. Melzoch, M. Rychtera, B. Sekavová, Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth, Desalination 162(2004) 361-372. [44] L. Yu, T. Lin, Q. Guo, J. Hao, Relation between mass transfer and operation parameters in the electrodialysis recovery of acetic acid, Desalination 154(2) (2003) 147-152. [45] L.X. Yu, Q.F. Guo, J.H. Hao, W.J. Jiang, Recovery of acetic acid from dilute wastewater by means of bipolar membrane electrodialysis, Desalination 129(3) (2000) 283-288. [46] H. Zhang, L. Zhou, Z. Zhao, Treatment of waste liquid containing low concentration of acetic acid by electrodialysis, Environ. Prot. Chem. Indus. 18(04) (1998) 3-6. [47] C. Mahendra, P.M. Satya Sai, C. Anand Babu, Current-voltage characteristics in a hybrid electrodialysis-ion exchange system for the recovery of cesium ions from ammonium molybdophosphate-polyacrylonitrile, Desalination 353(2014) 8-14. [48] G. Lee, Effects of operating parameters on the removal performance of electrodialysis for treating wastewater containing cadmium, Desalin. Water Treat. 35(1-3) (2011) 150-157. [49] T. Sata, Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis-effect of hydrophilicity of anion exchange membranes on permselectivity of anions, J. Membr. Sci. 167(1) (2000) 1-31. [50] P.K. Sow, D. Parvatalu, A. Bhardwaj, B.N. Prabhu, A.N. Bhaskarwar, A. Shukla, Impedance spectroscopic determination of effect of temperature on the transport resistances of an electro-electrodialysis cell used for concentration of hydriodic acid, J. Appl. Electrochem. 43(1) (2013) 31-41. [51] Y. Qiao, Z. Di, Y. Ma, P. Ma, S. Xia, Viscosities of pure water, acetic acid + water, and p-xylene + acetic acid + water at different temperature and pressure, Chin. J. Chem. Eng. 18(3) (2010) 446-454. [52] C.B. Castells, C. Ràfols, M. Rosés, E. Bosch, Effect of temperature on pH measurements and acid-base equilibria in methanol-water mixtures, J. Chromatogr. A 1002(1-2) (2003) 41-53. [53] G.S. Luo, S. Pan, J.G. Liu, Use of the electrodialysis process to concentrate a formic acid solution, Desalination 150(3) (2002) 227-234. [54] P.J. Moon, S.J. Parulekar, S. Tsai, Competitive anion transport in desalting of mixtures of organic acids by batch electrodialysis, J. Membr. Sci. 141(1) (1998) 75-89. [55] L. Liu, Z. Zhao, Y. Li, S. Shi, Y. Wang, L. Li, Study on the properties of heterogeneous anion exchange membrane fouled by octanoic acid in electrodialysis, Membr. Sci. Technol. 36(01) (2016) 55-60. [56] A.K. Singh, S. Kumar, M. Bhushan, V.K. Shahi, High performance cross-linked dehydro-halogenated poly (vinylidene fluoride-co-hexafluoro propylene) based anion-exchange membrane for water desalination by electrodialysis, Sep. Purif. Technol. 234(2020) 116078. [57] S. Suwal, J. Amiot, L. Beaulieu, L. Bazinet, Effect of pulsed electric field and polarity reversal on peptide/amino acid migration, selectivity and fouling mitigation, J. Membr. Sci. 510(2016) 405-416. [58] L. Hao, C. Wang, Q. Chen, X. Yu, J. Liao, J. Shen, C. Gao, A facile approach to fabricate composite anion exchange membranes with enhanced ionic conductivity and dimensional stability for electrodialysis, Sep. Purif. Technol. 227(2019) 115725. [59] W. Wang, R. Fu, Z. Liu, H. Wang, Low-resistance anti-fouling ion exchange membranes fouled by organic foulants in electrodialysis, Desalination 417(2017) 1-8. |