[1] New Energy and Industrial Technology Development Organization (NEDO), Japan Clean Coal Technologies in Japan, 2006. [2] G. Guan, C. Fushimi, A. Tsutsumi, M. Ishizuka, S. Matsuda, H. Hatano, Y. Suzuki, High-density circulating fluidized bed gasifier for advanced IGCC/IGFC-advantages and challenges, Particuology 8(6) (2010) 602-606. [3] X. Tang, S. Snowden, B.C. McLellan, M. Höök, Clean coal use in China:Challenges and policy implications, Energy Policy 87(2015) 517-523. [4] R. Gupta, Advanced coal characterization:A review, Energy Fuel 21(2) (2007) 451-460. [5] T. Kuramochi, Review of energy and climate policy developments in Japan before and after Fukushima, Renew. Sust. Energ. Rev. 43(2015) 1320-1332. [6] K. Goto, K. Yogo, Higashii, A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture, Appl. Energy 111(2013) 710-720. [7] Y. Yamauchi, K. Akiyama, Innovative zero-emission coal gasification power generation project, Energy Procedia 37(2013) 6579-6586. [8] M. Xu, R. Yan, C. Zheng, Y. Qiao, J. Han, C. Sheng, Status of trace element emission in a coal combustion process:A review, Fuel Process. Technol. 85(2-3) (2004) 215-237. [9] Q. Wang, R. Li, Journey to burning half of global coal:trajectory and drivers of China's coal use, Renew. Sust. Energ. Rev. 58(2016) 341-346. [10] M.F. Irfan, M.R. Usman, K. Kusakabe, Coal gasification in CO2 atmosphereabd its kinetics since 1948:A brief review, Energy 36(1) (2011) 12-40. [11] G. Scheffknecht, L. Al-Makhadmeh, U. Schnell, J. Maier, Oxy-fuel coal combustion-A review of the current state-of-the art, Int. J. Greenhouse Gas Control 5(S1) (2011) S16-S35. [12] Y. Ohtsuka, N. Tsubouchi, T. Kikuchi, H. Hashimoto, Recent progress in Japan on hot gas cleanup of hydrogen chloride, hydrogen sulfide and ammonia in coal-derived fuel gas, Powder Technol. 190(3) (2009) 340-347. [13] M. Fukuda, E. Saito, Y. Tanaka, T. Takahashi, J. Iwasaki, S. Takano, S. Izumi, Advanced USC technology development in Japan, Advances in Materials Technology for Fossil Power Plants, ASM International, Materials Park Ohio 2010, pp. 325-392. [14] S. Lin, Development of in-situ CO2 capture coal utilization technologies, Energy Procedia 37(2013) 99-106. [15] M. Iijima, T. Kamijo, T. Takashina, A. Oguchi, Fuel gas CO2 recovery utilization, disposal, and business development, Mitsubishi Heavy Industries Technical Review, 40(Extra No 1), 2003, pp. 1-5. [16] N. Nagasaki, Y. Takeda, T. Akiyama, T. Kumagai, Progress toward commercializing new technologies for coal use-oxygen-blown IGCC + CCS, Hitachi Rev. 59(3) (2010) 77-82. [17] T. Hashimoto, K. Sakamoto, Y. Kitagawa, Y. Hyakutake, N. Setani, Development of IGCC commercial plant with air-blown gasifier, Mitsubishi Heavy Ind. Tech. Rev. 46(2) (2009) 1-5. [18] T. Hashimoto, K. Sakamoto, H. Ishii, T. Fujii, Y. Koyama, Commercialization of clean coal technology with CO2 recovery, Mitsubishi Heavy Ind. Tech. Rev. 47(1) (2010) 9-14. [19] M. Ishida, D. Zheng, Akehata, Evaluation of a chemical-looping combustion power generation system by graphic exergy analysis, Energy 12(2) (1987) 147-154. [20] A. Lyngfelt, Chemical-looping combustion of solid fuels-status of development, Appl. Energy 113(2014) 1869-1873. [21] M. Kawabata, O. Kurata, N. Iki, C. Fushimi, A. Tsutsumi, Analysis of IGFC with exergy recuperation and carbon dioxide separation unit, Proceedings of ASME Turbo Expo 2012:Turbine Technical Conference and Exposition, Copenhagen, Denmark, 3, 2012, pp. 441-448. [22] D. Panthi, B. Choi, A. Tsutsumi, A novel type of micro-tubular SOFC for application in super IGFC system, Proceedings of International Symposium on Chemical Reaction Engineering. Maastricht, The Netherlands, 2012. [23] M. Taniguchi, Y. Yamikawa, T. Tatsumi, Yamamoto, Staged combustion properties for pulverized coals at high temperature, Combust. Flame 158(11) (2011) 2261-2271. [24] K. Ochi, K. Kiyama, H. Yoshizako, H. Okazaki, M. Taniguchi, Latest low-NOx combustion Technology for pulverized-coal-fired boilers, Hitachi Rev. 58(2009) 187-193. [25] P.S. Weitzel, Steam generator for advanced ultra-supercritical power plants 700 to 760C, ASME 2011 Power Conference, Denver, Colorado, USA 2011, pp. 1-10. [26] F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ Int. 41(6) (2001) 612-625. [27] Y. Fukuda, Development of advanced ultra supercritical fossil power plants in Japan:Materials and high temperature corrosion properties, Mater. Sci. Forum 696(2011) 236-241. [28] M. Kai, S. Asano, New internally circulating fluidized-bed gasifier and its feasibility, Ebara Gihou 10(2007) 36-40. [29] K. Tsukamoto, N. Miyoshi, Industrial waste combustion boiler installed at paper mill ebara internally circulating fluidized bed boiler (ICFB) & Gasifier (ICFG), Jpn. TAPPI J. 57(5) (2003) 645-653. [30] I. Sugiyama, M. Izuka, T. Shikata, K. Oki, S. Koga, A. Nishiyama, Commercialization of the fluidized bed boiler in Japan, Hitachi Rev. 72(6) (1990) 85-94. [31] H. Liu, T. Kojima, Theoretical study of coal gasification in a 50 ton/day HYCOL entrained flow gasifier. I. Effects of coal properties and implications, Energy Fuel 18(4) (2004) 908-912. [32] H. Liu, T. Kojima, Theoretical study of coal gasification in a 50 ton/day HYCOL entrained flow gasifier. Ⅱ. Effects of operating conditions and comparison with pilot-scale experiments, Energy Fuel 18(4) (2004) 913-917. [33] A.G. Collot, Matching gasification technologies to coal properties, Int. J. Coal Geol. 65(3-4) (2006) 191-212. [34] E. Shoko, B. McLellan, A.L. Dicks, J.C. Diniz da Costa, Hydrogen from coal:production and utilisation technologies, Int. J. Coal Geol. 65(3-4) (2006) 213-222. [35] A. Giuffrida, M.C. Romano, G. Lozza, Thermodynamic analysis of air-blown gasification for IGCC applications, Appl. Energy 88(2011) 3949-3958. [36] A. Giuffrida, M.C. Romano, G. Lozza, Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up, Appl. Energy 110(2013) 44-45. [37] Y. Oki, J. Inumaru, S. Hara, M. Kobayashi, H. Watanabe, S. Umemoto, H. Makino, Development of oxy-fuel IGCC system with CO2 recirculation for CO2 capture, Energy Procedia 4(2011) 1066-1073. [38] A. Tsutsumi, Advanced IGCC/IGFC using exergy recuperation technology, CCT J. 11(2004) 17-22(in Japanese). [39] N. Iki, A. Tsutsumi, Y. Matsuzawa, F. Furutani, Parametric study of advanced IGCC, Proceedings of ASME Turbo Expo 2009:Power for Land, Sea and Air. Orlando, FL, USA, 2009(Paper GT2009-59984, 9 pp.). [40] G. Guan, C. Fushimi, A. Tsutsumi, Prediction of flow behavior of the riser in a novel high solids flux circulating fluidized beds for steam gasification of coal or biomass, Chem. Eng. J. 164(2010) 221-229. [41] C. Fushimi, G. Guan, Y. Nakamura, M. Ishizuka, A. Tsutsumi, S. Matsuda, H. Hatano, Y. Suzuki, Hydrodynamic characteristics of a large-scale triple-bed combined circulating fluidized bed, Powder Technol. 209(2011) 1-8. [42] G. Guan, C. Fushimi, M. Ishizuka, Y. Nakamura, A. Tsutsumi, S. Matsuda, Y. Suzuki, H. Hatano, Y. Cheng, E.W.C. Lim, C.H. Wang, Flow behaviors in the downer of a largescale triple-bed combined circulating fluidized bed system with high solids mass fluxes, Chem. Eng. Sci. 66(18) (2011) 4212-4220. [43] C. Fushimi, G. Guan, Y. Nakamura, M. Ishizuka, A. Tsutsumi, Y. Suzuki, Y. Cheng, E.W.C. Lim, C.H. Wang, Mixing behaviors of cold-hot particles in the downer of a triple-bed combined circulating fluidized bed, Powder Technol. 221(2012) 70-79. [44] Y. Cheng, D.Y.J. Lau, G. Guan, C. Fushimi, A. Tsutsumi, C.H. Wang, Experimental and numerical investigations on electrostatics generation and transport in the downer reactor of a triple-bed combined circulating fluidized bed, Ind. Eng. Chem. Res. 51(43) (2012) 14258-14267. [45] G. Guan, M. Ishizuka, C. Fushimi, A. Tsutsumi, Y. Suzuki, Downward gas-solids flow characterization in a high-density downer reactor, J. Chem. Eng. Jpn. 45(2012) 948-954. [46] Y. Yoshie, M. Ishizuka, G. Guan, C. Fushimi, A. Tsutusmi, A novel experimental technique to determine the heat transfer coefficient between the bed and particles in a downer, Adv. Powder Technol. 24(2) (2013) 487-494. [47] C. Fushimi, M. Ishizuka, G. Guan, Y. Suzuki, K. Norinaga, J.-I. Hayashi, A. Tsutsumi, Hydrodynamic behavior of binary mixture of solids in a triple-bed combined circulating fluidized bed with high mass flux, Adv. Powder Technol. 25(1) (2014) 379-388. [48] Y. Cheng, W. Zhang, G. Guan, C. Fushimi, A. Tsutsumi, C.H. Wang, Numerical studies of solid-solid mixing behaviors in a downer reactor for coal pyrolysis, Powder Technol. 253(2014) 722-732. [49] A. Tsutsumi, A novel integrated exergy recuperative coal gasification and SOFC system (S-IGFC) for hydrogen and power coproduction using triple-bed combined circulating fluidized bed, Proceedings of 2015 AIChE Annual Meeting, Salt Lake City, UT, 2015. [50] D. Panthi, B. Choi, A. Tsutsumi, Advanced power generation from coal based on an innovative design of solid oxide fuel cell, Proceedings of 2012 AIChE Spring Metting & 8th Global Congress on Process Safety, Houston, Texas, USA, 2012. [51] S. Lin, Y. Suzuki, H. Hatano, M. Harada, Developing an innovative method, HyPrRING, to produce hydrogen from hydrocarbons, Energy Convers. Manag. 43(9-12) (2002) 1283-1290. [52] S. Lin, M. Harada, Y. Suzuki, H. Hatano, Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING), Energy Convers. Manag. 46(6) (2005) 869-880. [53] S. Lin, T. Kiga, K. Nakayama, Suzuki, Coal power generation with in-situ CO2 capture-HyPr-RING method-effect of ash separation on plant efficiency, Energy Procedia 4(2011) 378-384. [54] C. Kunze, Spliethoff, Assessment of oxy-fuel, pre-and post-combustion-based carbon capture for future IGCC plants, Appl. Energy 94(2012) 109-116. [55] M. Wang, A. Lawal, P. Stephenson, J. Sidders, Ramshaw. Post-combustion CO2 capture with chemical absorption:A state-of-the art review, Chem. Eng. Res. Des. 89(9) (2011) 1609-1624. [56] F. Carrasco-Maldonado, R. Spörl, K. Fleiger, V. Hoenig, J. Maier, G. Scheffknecht, Oxyfuel combustion technology for cement production-state of the art research and technology development, Int. J. Greenhouse Gas Control 45(2016) 189-199. [57] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sust. Energ. Rev. 39(2014) 426-443. [58] Environmentally Harmonized Steelmaking Process Technology Development, COURSE 50, The Japan Iron and Steel Federation, Japan, 2011 http://www.jisf.or.jp/course50/index_en.html. [59] Y. Ohashi, T. Ogawa, S. Yamanaka, Carbon dioxide capture from flue gas of thermal power plants, Toshiba Rev. 63(9) (2008) 31-33. [60] T. Mimura, M. Hayashi, D. Hagiu, Development of CO2 chemical adsorption process-challenge at the lowest energy consumption in the world, Shinnitetsu Engineering Giho, 3, 2012, pp. 25-30. [61] S. Kasahara, E. Kamio, A.R. Shaikh, T. Matsuki, H. Matsuyama, Effect of the aminogroup densities of functionalized ionic liquids on the facilitated transport properties for CO2 separation, J. Membr. Sci. 503(2016) 148-157. [62] I. Taniguchi, S. Duan, S. Kazama, Y. Fujioka, Facile fabrication of a novel high performance CO2 separation membrane:Immobilization of poly(amidoamine) dendrimemers in poly(ethylene glycol) networks, J. Membr. Sci. 322(2) (2008) 277-280. [63] I. Taniguchi, T. Kai, S. Duan, S. Kazama, H. Jinnai, A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine)dendrimer-containing polymeric membranes, J. Membr. Sci. 475(2015) 175-183. [64] L. Fan, F. Li, S. Ramkumar, Utilization of chemical looping strategy in coal gasification processes, Particuology 6(2008) 131-142. [65] H. Yamagata, Carbon capture and storage activities in Japan, http://www.cslforum.org/publications/documents/Japan_CCS.pdf. [66] H.M. Homma, Carbon dioxide capture and storage (CCS) in Japan, http://www.xdos.co.jp/CCSJp.pdf. [67] C.Z. Li, Important of volatile-char interactions during the pyrolysis and gasification of low-rank fuels-A review, Fuel 112(2013) 609-623. [68] J.-I. Hayashi, S. Hosokai, N. Sonoyama, Gasification of low-rank solid fuels with thermochemical energy recuperation for hydrogen production and power generation, Trans IChemE, Part B, Process Saf. Environ. Prot. 84(6B) (2006) 409-419. [69] J. Zhang, R. Wu, G. Zhang, C. Yao, Y. Zhang, Y. Wang, G. Xu, Recent studies on chemical engineering fundamentals for fuel pyrolysis and gasification in duel fluidized bed, Ind. Eng. Chem. Res. 52(19) (2013) 6283-6302. [70] T. Suda, M. Takafuji, M. Narukawa, Y. Matsuzawa, G. Xu, T. Fujimori, Gasification of lignite coal using twin circulating fluidized bed gasifier, J. Soc. Powder Technol. Jpn. 46(2009) 436-441. |