[1] M. Pan, I. Bulatov, R. Smith, Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation, Appl. Energy 161(2016) 611-626. [2] S.R. Wan Alwi, Z.A. Manan, Simultaneous energy targeting, placement of utilities with flue gas, and design of heat recovery networks, Appl. Energy 161(2016) 605-610. [3] F. Xiao, J. Du, L. Liu, G. Luan, P. Yao, Simultaneous optimization of synthesis and scheduling of cleaning in flexible heat exchanger networks, Chin. J. Chem. Eng. 18(3) (2010) 402-411. [4] A. Mian, E. Martelli, F. Maréchal, Framework for the multiperiod sequential synthesis of heat exchanger networks with selection, design, and scheduling of multiple utilities, Ind. Eng. Chem. Res. 55(1) (2016) 168-186. [5] B.K. Sreepathi, G.P. Rangaiah, Retrofitting of heat exchanger networks involving streams with variable heat capacity:Application of single and multi-objective optimization, Appl. Therm. Eng. 75(2015) 677-684. [6] L.M. Ochoa-Estopier, M. Jobson, L. Chen, C.A. Rodríguez-Forero, R. Smith, Optimization of heat-integrated crude oil distillation systems, Part Ⅱ:Heat exchanger network retrofit model, Ind. Eng. Chem. Res. 54(18) (2015) 5001-5017. [7] J.J. Klemeš, P.S. Varbanov, P. Kapustenko, New developments in Heat Integration and intensification, including Total Site, waste-to-energy, supply chains and fundamental concepts, Appl. Therm. Eng. 61(1) (2013) 1-6. [8] B. Bakhtiari, S. Bedard, Retrofitting heat exchanger networks using a modified network pinch approach, Appl. Therm. Eng. 51(1-2) (2013) 973-979. [9] B.H. Li, C.T. Chang, Retrofitting heat exchanger networks based on simple pinch analysis, Ind. Eng. Chem. Res. 49(8) (2010) 3967-3971. [10] J.L. van Reisen, G.T. Polley, P.J. Verheijen, Structural targeting for heat integration retrofit, Appl. Therm. Eng. 18(5) (1998) 283-294. [11] R. Lakshmanan, R. Bañares-Alcántara, A novel visualization tool for heat exchanger network retrofit, Ind. Eng. Chem. Res. 35(12) (1996) 4507-4522. [12] J.Y. Yong, P.S. Varbanov, J.J. Klemeš, Heat exchanger network retrofit supported by extended Grid Diagram and heat path development, Appl. Therm. Eng. 89(2015) 1033-1045. [13] B.J. Tiew, M. Shuhaimi, H. Hashim, Carbon emission reduction targeting through process integration and fuel switching with mathematical modeling, Appl. Energy 92(2012) 686-693. [14] L. Kang, Y. Liu, Multi-objective optimization on a heat exchanger network retrofit with a heat pump and analysis of CO2 emissions control, Appl. Energy 154(2015) 696-708. [15] T.F. Yee, I.E. Grossmann, Simultaneous optimization models for heat integration-Ⅱ. Heat exchanger network synthesis, Comput. Chem. Eng. 14(10) (1990) 1165-1184. [16] X.-W. Liu, X. Luo, H.-G. Ma, Studies on the retrofit of heat exchanger network based on the hybrid genetic algorithm, Appl. Therm. Eng. 62(2) (2014) 785-790. [17] H. Zhang, G.P. Rangaiah, One-step approach for heat exchanger network retrofitting using integrated differential evolution, Comput. Chem. Eng. 50(2015) 92-104. [18] K.-M. Björk, R. Nordman, Solving large-scale retrofit heat exchanger network synthesis problems with mathematical optimization methods, Chem. Eng. Process. Process Intensif. 44(8) (2005) 869-876. [19] K.-L. Ma, C.-W. Hui, T.F. Yee, Constant approach temperature model for HEN retrofit, Appl. Therm. Eng. 20(15-16) (2000) 1505-1533. [20] E. Rezaei, S. Shafiei, Heat exchanger networks retrofit by coupling genetic algorithm with NLP and ILP methods, Comput. Chem. Eng. 33(9) (2009) 1451-1459. [21] J. Zhang, X.X. Zhu, Simultaneous optimization approach for heat exchanger network retrofit with process changes, Ind. Eng. Chem. Res. 39(12) (2000) 4963-4973. [22] B.K. Sreepathi, G. Rangaiah, Improved heat exchanger network retrofitting using exchanger reassignment strategies and multi-objective optimization, Energy 67(2014) 584-594. [23] R. Smith, M. Jobson, L. Chen, Recent development in the retrofit of heat exchanger networks, Appl. Therm. Eng. 30(16) (2010) 2281-2289. [24] L. Kang, Y. Liu, Minimizing investment cost for multi-period heat exchanger network retrofit by matching heat transfer areas with different strategies, Chin. J. Chem. Eng. 23(7) (2015) 1153-1160. [25] L. Kang, Y. Liu, Retrofit of heat exchanger networks for multiperiod operations by matching heat transfer areas in reverse order, Ind. Eng. Chem. Res. 53(12) (2014) 4792-4804. [26] L. Kang, Y. Liu, Target-oriented methodology on matching heat transfer areas for a multiperiod heat exchanger network retrofit, Ind. Eng. Chem. Res. 53(45) (2014) 17753-17769. [27] N. Zhang, W. Verheyen, Design of flexible heat exchanger network for multi-period operation, Chem. Eng. Sci. 61(23) (2006) 7730-7753. [28] J.M. Ponce-Ortega, A. Jiménez-Gutiérrez, I.E. Grossmann, Simultaneous retrofit and heat integration of chemical processes, Ind. Eng. Chem. Res. 47(15) (2008) 5512-5528. [29] L. Kang, Y. Liu, L. Wu, Synthesis of multi-period heat exchanger networks based on features of sub-period durations, Energy 116(2016) 1302-1311. [30] A. Isafiade, M. Bogataj, D. Fraser, Z. Kravanja, Optimal synthesis of heat exchanger networks for multi-period operations involving single and multiple utilities, Chem. Eng. Sci. 127(2015) 175-188. [31] R. Smith, Chemical Process Design and Integration, Ⅱ, Wiley, New York, US, 2005. [32] J. Sun, X. Feng, Y. Wang, C. Deng, K.H. Chu, Pump network optimization for a cooling water system, Energy 67(2014) 506-512. [33] L. Kang, Y. Liu, X. Liang, Multi-objective optimization of heat exchanger networks based on analysis of minimum temperature difference and accumulated CO2 emissions, Appl. Therm. Eng. 87(2015) 736-748. |