[1] E.D. Sloan, Fundamental principles and applications of natural gas hydrates, Nature 426(6964) (2003) 353-363. [2] A. Chapoy, A.-H. Mohammadi, D. Richon, Predicting the hydrate stability zones of natural gases using artificial neural networks, Oil Gas Sci. Technol. Rev. l'IFP 62(5) (2007) 701-706. [3] E.D. Sloan, C. Koh, Clathrate Hydrates of Natural Gases, Third edition, Taylor & Francis, 2007. [4] J. Carroll, Natural Gas Hydrates:A Guide for Engineers, Elsevier Science, 2009. [5] A.H. Mohammadi, D. Richon, Development of predictive techniques for estimating liquid water-hydrate equilibrium of water-hydrocarbon system, J. Thermodyn. 2009(2009) 1-12. [6] A.H. Mohammadi, R. Anderson, B. Tohidi, Carbon monoxide clathrate hydrates:Equilibrium data and thermodynamic modeling, AIChE J. 51(10) (2005) 2825-2833. [7] E. Hammerschmidt, Formation of gas hydrates in natural gas transmission lines, Ind. Eng. Chem. 26(8) (1934) 851-855. [8] D.L. Katz, Prediction of conditions for hydrate formation in natural gases, Trans. AIME 160(1945) 140-149. [9] W.I. Wilcox, D. Carson, D. Katz, Natural gas hydrates, Ind. Eng. Chem. 33(5) (1941) 662-665. [10] C. Baillie, E. Wichert, Chart gives hydrate formation temperature for natural gas, Oil Gas J. 85(14) (1987) 37-39. [11] S.L. Mann, Vapor-Solid Equilibrium Ratios for Structure I and Ⅱ Natural Gas Hydrates, Gas Processors Association, 1988. [12] I.U.r.F. Makogon, et al., Hydrates of Natural Gas, PennWell Books, Tulsa, Oklahoma, 1981. [13] B. Berge, Hydrate predictions on a microcomputer, In:Petroleum Industry Application of Microcomputers, SPE, Colorado, USA, 1986. [14] R. Kobayashi, K.Y. Song, E.D. Sloan, Phase behavior of water/hydrocarbon systems, Petroleum Engineering Handbook 25(1987) e13. [15] M. Motiee, Estimate possibility of hydrates, Hydrocarb. Process. 70(7) (1991) 98-99. [16] B. Towler, S. Mokhatab, Quickly estimate hydrate formation conditions in natural gases, Hydrocarb. Process. 84(4) (2005) 61-62. [17] A. Bahadori, H.B. Vuthaluru, A novel correlation for estimation of hydrate forming condition of natural gases, J. Nat. Gas Chem. 18(4) (2009) 453-457. [18] M. Safamirzaei, Predict gas hydrate formation temperature with a simple correlation, in, 2015, http://www.gasprocessingnews.com/features/201508/Predict Gas Hydrate Formation Temperature With a Simple Correlation.aspx. Accessed:18.09.15. [19] S.O. Salufu, P. Nwakwo, New empirical correlation for predicting hydrate formation conditions, SPE Nigeria Annual International Conference and Exhibition, Society of Petroleum Engineers, 2013. [20] W.R. Parrish, J.M. Prausnitz, Dissociation pressures of gas hydrates formed by gas mixtures, Ind. Eng. Chem. Process. Des. Dev. 11(1) (1972) 26-35. [21] H.J. Ng, D.B. Robinson, The measurement and prediction of hydrate formation in liquid hydrocarbon-water systems, Ind. Eng. Chem. Fundam. 15(4) (1976) 293-298. [22] V. John, K. Papadopoulos, G. Holder, A generalized model for predicting equilibrium conditions for gas hydrates, AIChE J. 31(2) (1985) 252-259. [23] G.J. Chen, T.M. Guo, Thermodynamic modeling of hydrate formation based on new concepts, Fluid Phase Equilib. 122(1) (1996) 43-65. [24] G.J. Chen, T.M. Guo, A new approach to gas hydrate modelling, Chem. Eng. J. 71(2) (1998) 145-151. [25] C.Y. Sun, G.J. Chen, Modelling the hydrate formation condition for sour gas and mixtures, Chem. Eng. Sci. 60(17) (2005) 4879-4885. [26] A. Elgibaly, A. Elkamel, Optimal hydrate inhibition policies with the aid of neural networks, Energy Fuel 13(1) (1999) 105-113. [27] A.A. Elgibaly, A.M. Elkamel, A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors, Fluid Phase Equilib. 152(1) (1998) 23-42. [28] G. Zahedi, Z. Karami, H. Yaghoobi, Prediction of hydrate formation temperature by both statistical models and artificial neural network approaches, Energy Convers. Manag. 50(8) (2009) 2052-2059. [29] A.H. Mohammadi, V. Belandria, D. Richon, Use of an artificial neural network algorithm to predict hydrate dissociation conditions for hydrogen + water and hydrogen + tetra-n-butyl ammonium bromide + water systems, Chem. Eng. Sci. 65(14) (2010) 4302-4305. [30] M. Ghavipour, M. Chitsazan, S.H. Najibi, S.S. Ghidary, Experimental study of natural gas hydrates and a novel use of neural network to predict hydrate formation conditions, Chemical Engineering Research and Design 91(2013) 264-273. [31] M. Moradi, K. Nazari, S. Alavi, M. Mohaddesi, Prediction of equilibrium conditions for hydrate formation in binary gaseous systems using artificial neural networks, Energy Technol. 1(2-3) (2013) 171-176. [32] J. Yang, B. Tohidi, Determination of hydrate inhibitor concentrations by measuring electrical conductivity and acoustic velocity, Energy Fuel 27(2) (2013) 736-742. [33] A. Eslamimanesh, F. Gharagheizi, M. Illbeigi, A.H. Mohammadi, A. Fazlali, D. Richon, Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen + water soluble organic promoters using support vector machine algorithm, Fluid Phase Equilib. 316(2012) 34-45. [34] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20(3) (1995) 273-297. [35] J.A. Suykens, J. Vandewalle, Least squares support vector machine classifiers, Neural. Process. Lett. 9(3) (1999) 293-300. [36] M. Curilem, G. Acuña, F. Cubillos, E. Vyhmeister, Neural networks and support vector machine models applied to energy consumption optimization in semiautogeneous grinding, Chem. Eng. Trans. 25(2011) 761-766. [37] E.Soroush,M.Mesbah, A.Shokrollahi, A.Bahadori,M.H.Ghazanfari,Predictionofmethane uptake on different adsorbents in adsorbed natural gas technology using a rigorous model, Energy Fuel 28(10) (2014) 6299-6314. [38] H. Wang, D. Hu, Comparison of SVM and LS-SVM for regression, 2005 International Conference on Neural Networks and Brain, IEEE, 2005. [39] J.A. Suykens, J. De Brabanter, L. Lukas, J. Vandewalle, Weighted least squares support vector machines:Robustness and sparse approximation, Neurocomputing 48(1) (2002) 85-105. [40] K. Pelckmans, J.A. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas, B. Hamers, B. De Moor, J. Vandewalle, LS-SVMlab:A Matlab/c Toolbox for Least Squares Support Vector Machines. Tutorial, KULeuven-ESAT, Leuven, Belgium, 2002. [41] W. Deaton, E. Frost Jr., Gas Hydrates and Their Relation to the Operation of Naturalgas Pipe Lines, Helium Research Center, Bureau of Mines, Amarillo, TX (USA), 1946. [42] R. Kobayashi, H. Withrow, G. Williams, D. Katz, Gas hydrate formation with brine and ethanol solutions, Proceeding of the 30th Annual Convention, Natural Gasoline Association of America, 1951. [43] L.J. Noaker, D.L. Katz, M. Aime, Gas hydrates of hydrogen sulphide-methane mixtures, Trans. Am. Inst. Min. Metall. Pet. Eng. 201(1954) 237-239. [44] H. McLeod Jr., J. Campbell, 1566-G-natural gas hydrates at pressures to 10,000 psia, J. Pet. Technol. 13(6) (1961) 590-594. [45] D. Robinson, J. Hutton, Hydrate formation systems containing methane, hydrogen sulphide and carbon dioxide, J. Can. Pet. Technol. 10(1971) 33-35. [46] S. Adisasmito, R.J. Frank Ⅲ, E.D. Sloan Jr., Hydrates of carbon dioxide and methane mixtures, J. Chem. Eng. Data 36(1) (1991) 68-71. [47] C.Y. Sun, G.J. Chen, W. Lin, T.M. Guo, Ice, 1995. [48] E. Kamari, M. Oyarhossein, Experimental determination of hydrate phase equilibrium curve for an Iranian sour gas condensate sample, J. Nat. Gas Sci. Eng. 9(2012) 11-15. [49] G. Jeffrey, R. McMullan, The clathrate hydrates, Prog. Inorg. Chem. 8(1967) 43-108. [50] K. De Brabanter, P. Karsmakers, F. Ojeda, C. Alzate, J. De Brabanter, K. Pelckmans, B. De Moor, J. Vandewalle, J. Suykens, LS-SVMlab Toolbox User's Guide, ESAT-SISTA Technical Report, 102011. [51] C.R. Goodall, 13 computation using the QR decomposition, Handbook of Statistics, 9, 1993, pp. 467-508. [52] P.J. Rousseeuw, A.M. Leroy, Robust Regression and Outlier Detection, vol. 589, Wiley.com, 2005. [53] P. Gramatica, Principles of QSAR models validation:Internal and external, QSAR Comb. Sci. 26(5) (2007) 694-701. [54] A. Kamari, M. Arabloo, A. Shokrollahi, F. Gharagheizi, A.H. Mohammadi, Rapid method to estimate the minimum miscibility pressure (MMP) in live reservoir oil systems during CO2 flooding, Fuel 153(2015) 310-319. |