[1] S. Effendy, C. Xu, S. Farooq, Correction to "optimization of a pressure swing adsorption process for nitrogen rejection from natural gas", Ind. Eng. Chem. Res. 57 (5) (2018) 1763-1766 [2] V.I. Águeda Maté, J.A. Delgado Dobladez, S. Álvarez-Torrellas, M. Larriba, Á. Martínez Rodríguez, Modeling and simulation of the efficient separation of methane/nitrogen mixtures with[Ni3(HCOO)6] MOF by PSA, Chem. Eng. J. 361 (2019) 1007-1018 [3] O. Onel, A.M. Niziolek, J.A. Elia, R.C. Baliban, C.A. Floudas, Biomass and natural gas to liquid transportation fuels and olefins (BGTL+C2_C4):Process synthesis and global optimization, Ind. Eng. Chem. Res. 54 (1) (2015) 359-385 [4] S.U. Nandanwar, D.R. Corbin, M.B. Shiflett, A review of porous adsorbents for the separation of nitrogen from natural gas, Ind. Eng. Chem. Res. 59 (30) (2020) 13355-13369 [5] M. Qyyum, K. Qadeer, M. Lee, Comprehensive review of the design optimization of natural gas liquefaction processes:Current status and perspectives, Ind. Eng. Chem. Res. 57 (17) (2018) 5819-5844 [6] R.W. Baker, K. Lokhandwala, Natural gas processing with membranes:An overview, Ind. Eng. Chem. Res. 47 (7) (2008) 2109-2121 [7] M.A. Carreon, Molecular sieve membranes for N2/CH4 separation, J. Mater. Res. 33 (1) (2018) 32-43 [8] Y.D. Cheng, Z.H. Wang, D. Zhao, Mixed matrix membranes for natural gas upgrading:Current status and opportunities, Ind. Eng. Chem. Res. 57 (12) (2018) 4139-4169 [9] Y. Guo, J.L. Hu, X.W. Liu, T.J. Sun, S.S. Zhao, S.D. Wang, Scalable solvent-free preparation of[Ni3(HCOO)6] frameworks for highly efficient separation of CH4 from N2, Chem. Eng. J. 327 (2017) 564-572 [10] M. Tagliabue, D. Farrusseng, S. Valencia, S. Aguado, U. Ravon, C. Rizzo, A. Corma, C. de Mirodatos, Natural gas treating by selective adsorption:Material science and chemical engineering interplay, Chem. Eng. J. 155 (3) (2009) 553-566 [11] R. T. Yang, Frontmatter. Adsorbents:Fundamentals and Applications. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2003 [12] D.W. Breck, Zeolite Molecular Sieves:Structure, Chemistry, and Use, John Wiley & Sons, New York, 1974 [13] D.L. Qu, Y. Yang, Z.L. Qian, P. Li, J.G. Yu, A.M. Ribeiro, A.E. Rodrigues, Enrichment of low-grade methane gas from nitrogen mixture by VPSA with CO2 displacement process:Modeling and experiment, Chem. Eng. J. 380 (2020) 122509 [14] B. Shimekit, H. Mukhtar, Natural gas purification technologies-major advances for CO2 separation and future directions. Advances in Natural Gas Technology (2012) 235-270 [15] T. Gao, W.S. Lin, A.Z. Gu, M. Gu, Coalbed methane liquefaction adopting a nitrogen expansion process with propane pre-cooling, Appl. Energy 87 (7) (2010) 2142-2147 [16] S. Cavenati, C.A. Grande, A.E. Rodrigues, Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas, Chem. Eng. Sci. 61 (12) (2006) 3893-3906 [17] J.C. Kuo, K.H. Wang, C. Chen, Pros and cons of different Nitrogen Removal Unit (NRU) technology, J. Nat. Gas Sci. Eng. 7 (2012) 52-59 [18] G.K. Xiao, T.L. Saleman, Y. Zou, G. Li, E.F. May, Nitrogen rejection from methane using dual-reflux pressure swing adsorption with a kinetically-selective adsorbent, Chem. Eng. J. 372 (2019) 1038-1046 [19] T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa, E.F. May, The removal of CO2 and N2 from natural gas:A review of conventional and emerging process technologies, J. Petroleum Sci. Eng. 94-95 (2012) 123-154 [20] N. Al-Janabi, R. Vakili, P. Kalumpasut, P. Gorgojo, F.R. Siperstein, X.L. Fan, P. McCloskey, Velocity variation effect in fixed bed columns:A case study of CO2 capture using porous solid adsorbents, AIChE J. 64 (6) (2018) 2189-2197 [21] L. Zhang, Y.L. Yin, L. Li, F. Wang, Q.B. Song, N. Zhao, F.K. Xiao, W. Wei, Numerical simulation of CO2 adsorption on K-based sorbent, Energy Fuels 30 (5) (2016) 4283-4291 [22] A.M. Banu, D. Friedrich, S. Brandani, T. Düren, A multiscale study of MOFs as adsorbents in H2 PSA purification, Ind. Eng. Chem. Res. 52 (29) (2013) 9946-9957 [23] M.S. Shafeeyan, W.M.A.W. Daud, A. Shamiri, N. Aghamohammadi, Modeling of carbon dioxide adsorption onto ammonia-modified activated carbon:Kinetic analysis and breakthrough behavior, Energy Fuels 29 (10) (2015) 6565-6577 [24] Q. Liu, L.Q. Ning, S.D. Zheng, M.N. Tao, Y. Shi, Y. He, Adsorption of carbon dioxide by MIL-101(Cr):Regeneration conditions and influence of flue gas contaminants, Sci Rep 3 (2013) 2916 [25] R. Krishna, J.R. Long, Screening metal-organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber, J. Phys. Chem. C 115 (26) (2011) 12941-12950 [26] L. A. Darunte, T. Sen, C. Bhawanani, K. S. Walton, D. S. Sholl, M. J. Realff, C. W. Jones, Moving Beyond Adsorption Capacity in Design of Adsorbents for CO2 Capture from Ultradilute Feeds:Kinetics of CO2 Adsorption in Materials with Stepped Isotherms, Ind. Eng. Chem. Res. 58 (2018) 366-377 [27] P.G. Aguilera, F.J. Gutiérrez Ortiz, Prediction of fixed-bed breakthrough curves for H2S adsorption from biogas:Importance of axial dispersion for design, Chem. Eng. J. 289 (2016) 93-98 [28] Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, Multicomponent adsorptive separation of CO2, CO, CH4, N2, and H2 over core-shell zeolite-5A@MOF-74 composite adsorbents, Chem. Eng. J. 384 (2020) 123251 [29] L. Erden, A. D. Ebner, J. A. Ritter, Separation of Landfill Gas CH4 from N2 Using Pressure Vacuum Swing Adsorption Cycles with Heavy Reflux, Energy Fuels 32 (2018) 3488-3498 [30] J.F. Yang, H.H. Bai, H. Shang, J. Wang, J.P. Li, S.G. Deng, Experimental and simulation study on efficient CH4/N2 separation by pressure swing adsorption on silicalite-1 pellets, Chem. Eng. J. 388 (2020) 124222 [31] H. Shang, H. Bai, J. Liu, J. Yang, J. Li, PSA simulation and adsorption separation of CH4-N2 by self-supporting pellets Silicalite-1, CIESC J. 71 (2020) 2088-2098. (in Chinese) [32] A.L. Myers, J.M. Prausnitz, Thermodynamics of mixed-gas adsorption, AIChE J. 11 (1) (1965) 121-127 [33] K.S. Walton, D.S. Sholl, Predicting multicomponent adsorption:50 years of the ideal adsorbed solution theory, AIChE J. 61 (9) (2015) 2757-2762 [34] A. Ladshaw, S. Yiacoumi, C. Tsouris, A generalized procedure for the prediction of multicomponent adsorption equilibria, AIChE J. 61 (8) (2015) 2600-2610 [35] S. M. McIntyre, B. Shan, R. Wang, C. Zhong, J. Liu, B. Mu, Monte Carlo simulations to examine the role of pore structure on ambient air separation in metal-organic frameworks, Ind. Eng. Chem. Res. 57 (2018) 9240-9253 [36] C. Goel, H. Bhunia, P. K. Bajpai, Prediction of binary gas adsorption of CO2/N2 and thermodynamic studies on nitrogen enriched nanostructured carbon adsorbents, J. Chem. Eng. Data, 62 (2017) 214-225 [37] M.D. LeVan, T. Vermeulen, Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions, J. Phys. Chem. 85 (22) (1981) 3247-3250 [38] Xu M, Deng S, Efficient screening of novel adsorbents for coalbed methane recovery, J. Colloid Interface Sci. 565 (2020) 131-141 [39] M.S. Santos, C.A. Grande, A.E. Rodrigues, New cycle configuration to enhance performance of kinetic PSA processes, Chem. Eng. Sci. 66 (8) (2011) 1590-1599 [40] T.S. Bhatt, A. Sliepcevich, G. Storti, R. Rota, Experimental and modeling analysis of dual-reflux pressure swing adsorption process, Ind. Eng. Chem. Res. 53 (34) (2014) 13448-13458 |