[1] C. James, G. Purnell, S.J. James, A review of novel and innovative food freezing technologies, Food Bioprocess Technol. 8(8) (2015) 1616-1634. [2] B. Li, D.-W. Sun, Novel method for rapid freezing and thawing of foods-A review, J. Food Eng. 54(2002) 175-182. [3] J.H. Mok, W. Choi, S.H. Park, S.H. Lee, S. Jun, Emerging pulsed electric field (PEF) and static magnetic field (SMF) combination technology for food freezing, Int. J. Refrig. 50(2015) 137-145. [4] P.G. Debenedetti, H.E. Stanley, Supercooled and glassy water, Phys. Today 15(6) (2003) 40-46. [5] H. Kiani, D.-W. Sun, Water crystallization and its importance to freezing of foods:A review, Trends Food Sci. Technol. 22(2011) 407-426. [6] A. Petersen, H. Schneider, G. Rau, B. Glasmacher, A new approach for freezing of aqueous solutions under active control of the nucleation temperature, Cryobiology 53(2) (2006) 248-257. [7] A. Sarkar, N. Nitin, M. Karwe, R.P. Singh, Fluid flow and heat transfer in air jet impingement in food processing, J. Food Sci. 69(4) (2004) 113-122. [8] M. Jafari, P. Alavi, Analysis of food freezing by slot jet impingement, J. Appl. Sci. 8(7) (2008) 1188-1196. [9] L.D. Kaale, T.M. Eikevik, The development of ice crystals in food products during the superchilling process and following storage, a review, Trends Food Sci. Technol. 39(2) (2014) 91-103. [10] C. Wu, C. Yuan, X. Ye, Y. Hu, S. Chen, D. Liu, A critical review on superchilling preservation technology in aquatic product, J. Integr. Agric. 13(12) (2014) 2788-2806. [11] G. Su, H.S. Ramaswamy, S. Zhu, Y. Yu, F. Hu, M. Xu, Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method, Innov. Food Sci. Emerg. Technol. 26(2014) 40-50. [12] N.A.S. Smith, V.M. Burlakov, A.M. Ramos, Mathematical modeling of the growth and coarsening of ice particles in the context of high pressure shift freezing processes, J. Phys. Chem. B 117(29) (2013) 8887-8895. [13] L. Otero, P. Sanz, B. Guignon, P.D. Sanz, Pressure-shift nucleation:A potential tool for freeze concentration of fluid foods, Innov. Food Sci. Emerg. Technol. 13(2012) 86-99. [14] X. Cheng, M. Zhang, B. Xu, B. Adhikari, J. Sun, The principles of ultrasound and its application in freezing related processes of food materials:A review, Ultrason. Sonochem. 27(2015) 576-585. [15] H. Kiani, Z. Zhang, D.-W. Sun, Experimental analysis and modeling of ultrasound assisted freezing of potato spheres, Ultrason. Sonochem. 26(2015) 321-331. [16] M.W. Woo, A.S. Mujumdar, Effects of electric and magnetic field on freezing and possible relevance in freeze drying, Dry. Technol. 28(4) (2010) 433-443. [17] A. Le Bail, M. Orlowska, M. Havet, Electrostatic field assisted food freezing, in:D.W. Sun (Ed.), Handbook of Frozen Food Processing and Packaging, second ed.CRC Press, Taylor & Francis Group, Boca Raton 2012, pp. 685-691. [18] M. Anese, L. Manzocco, A. Panozzo, P. Beraldo, M. Foschia, M.C. Nicoli, Effect of radiofrequency assisted freezing on meat microstructure and quality, Food Res. Int. 46(1) (2012) 50-54. [19] A. Kobayashi, J.L. Kirschvink, A ferromagnetic model for the action of electric and magnetic fields in cryopreservation, Cryobiology 68(2) (2013) 163-165. [20] N. Owada, S. Kurita, Super-quick freezing method and apparatus therefore, US Pat. 6250087 B1(2001). [21] N. Owada, Highly-efficient freezing apparatus and highly efficient freezing method, US Pat. 7237400 B2(2007). [22] K.X. Zhou, G.W. Lu, Q.C. Zhou, J.H. Song, S.T. Jiang, H.R. Xia, Monte Carlo simulation of liquid water in a magnetic field, J. Appl. Phys. 88(4) (2000) 1802-1805. [23] H. Hosoda, H. Mori, N. Sogoshi, A. Nagasawa, S. Nakabayashi, Refractive indices of water and aqueous electrolyte solutions under high magnetic fields, J. Phys. Chem. A 108(9) (2004) 1461-1464. [24] X.-F. Pang, G.-F. Shen, The changes of physical properties of water arising from the magnetic field and its mechanism, Mod. Phys. Lett. B 27(31) (2013) 1-9, 1350228. [25] K.-T. Chang, C.-I. Weng, An investigation into the structure of aqueous NaCl electrolyte solutions under magnetic fields, Comput. Mater. Sci. 43(4) (2008) 1048-1055. [26] R. Cai, H. Yang, J. He, W. Zhu, The effects of magnetic fields on water molecular hydrogen bonds, J. Mol. Struct. 938(1-3) (2009) 15-19. [27] S.A. Ghauri, M.S. Ansari, Increase of water viscosity under the influence of magnetic field, J. Appl. Phys. 100(6) (2006) 1-2, 066101. [28] N.S. Zaidi, J. Sohaili, K. Muda, M. Sillanpää, Magnetic field application and its potential in water and wastewater treatment systems, Sep. Purif. Rev. 43(3) (2014) 206-240. [29] V.D. Aleksandrov, A.A. Barannikov, N.V. Dobritsa, Effect of magnetic field on the supercooling of water drops, Inorg. Mater. 36(2000) 895-898. [30] M. Tagami, M. Hamai, I. Mogi, K. Watanabe, M. Motokawa, Solidification of levitating water in a gradient strong magnetic field, J. Cryst. Growth 203(1999) 594-598. [31] B. Wowk, Electric and magnetic fields in cryopreservation, Cryobiology 64(3) (2012) 301-303. [32] T. Suzuki, Y. Takeuchi, K. Masuda, M. Watanabe, R. Shirakashi, Y. Fukuda, T. Tsuruta, K. Yamamoto, N. Koga, N. Hiruma, J. Ichioka, K. Takai, Experimental investigation of effectiveness of magnetic field on food freezing process, Trans. Jpn. Soc. Refrig. Air Cond. Eng. 26(2009) 371-386. [33] C. Gao, G.-Y. Zhou, Y. Xu, Z.-Z. Hua, Freezing properties of EG and glycerol aqueous solutions studied by DSC, Acta Phys. -Chim. Sin. 20(2) (2004) 123-128. [34] M.A. Stephens, EDF statistics for goodness of fit and some comparisons, J. Am. Stat. Assoc. 69(1974) 730-737. |