[1] M. Mirzaei, M. Saffari Avval, H. Naderan, Heat transfer investigation of laminar developing flow of nanofluids in a microchannel based on Eulerian-Lagrangian approach, Can. J. Chem. Eng. 92(6) (2014) 1139-1149. [2] N. García-Hernando, A. Acosta-Iborra, U. Ruiz-Rivas, M. Izquierdo, Experimental investigation of fluid flow and heat transfer in a single-phase liquid flow micro-heat exchanger, Int. J. Heat Mass Transf. 52(23) (2009) 5433-5446. [3] D. Aston, C. Berven, B. Williams, A. Basu, Mathematical analysis of effects on the electrostatic double layer of nanoscale surfaces in microfluidic channels, Can. J. Chem. Eng. 90(4) (2012) 1059-1065. [4] J.T. Adeosun, A. Lawal, Numerical and experimental mixing studies in a MEMSbased multilaminated/elongational flow micromixer, Sensors Actuators B Chem. 139(2) (2009) 637-647. [5] R.E. Billo, C.R. Oliver, R. Charoenwat, B.H. Dennis, P.A. Wilson, J.W. Priest, H. Beardsley, A cellular manufacturing process for a full-scale biodiesel microreactor, J. Manuf. Syst. 37(2015) 409-416. [6] L. Wang, X. Kong, Y. Qi, Optimal design for split-and-recombine-type flow distributors of microreactors based on blockage detection, Chin. J. Chem. Eng. (2016) 897-903. [7] A.P. Wong, R. Perez-Castillejos, J.C. Love, G.M. Whitesides, Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments, Biomaterials 29(12) (2008) 1853-1861. [8] E. Leclerc, K. Furukawa, F. Miyata, Y. Sakai, T. Ushida, T. Fujii, Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications, Biomaterials 25(19) (2004) 4683-4690. [9] Y. Yamaguchi, T. Arakawa, N. Takeda, Y. Edagawa, S. Shoji, Development of a poly-dimethylsiloxane microfluidic device for single cell isolation and incubation, Sensors Actuators B Chem. 136(2) (2009) 555-561. [10] X. Zhang, X. Wu, R. Peng, D. Li, Electromagnetically controlled microfluidic chip for DNA extraction, Measurement 75(2015) 23-28. [11] F. Zhao, Y. Lu, K. Wang, G. Luo, Kinetic study on selective extraction of HCl and H3PO4 in a microfluidic device, Chin. J. Chem. Eng. 24(2) (2016) 221-225. [12] X. Ge, H. Zhao, T. Wang, J. Chen, J. Xu, G.-S. Luo, Microfluidic technology for multiphase emulsions morphology adjustment and functional materials preparation, Chin. J. Chem. Eng. (2016) 677-692. [13] J. Wang, Y. Wang, G. Luo, Preparation of silica-alumina hollow spheres with a single surface hole by co-axial microchannel, Chin. J. Chem. Eng. 22(11) (2014) 1352-1356. [14] J.T. Adeosun, A. Lawal, Numerical and experimental studies of mixing characteristics in a T-junction microchannel using residence-time distribution, Chem. Eng. Sci. 64(10) (2009) 2422-2432. [15] B.J. Jones, P.-S. Lee, S.V. Garimella, Infrared micro-particle image velocimetry measurements and predictions of flow distribution in a microchannel heat sink, Int. J. Heat Mass Transf. 51(7) (2008) 1877-1887. [16] V. Zivkovic, P. Zerna, Z. Alwahabi, M. Biggs, A pressure drop correlation for low Reynolds number Newtonian flows through a rectangular orifice in a similarly shaped micro-channel, Chem. Eng. Res. Des. 91(1) (2013) 1-6. [17] B. Srinivas, Electroosmotic flow of a power law fluid in an elliptic microchannel, Colloid Surf. A 492(2016) 144-151. [18] Q. Zhu, S. Deng, Y. Chen, Periodical pressure-driven electrokinetic flow of power-law fluids through a rectangular microchannel, J. Non-Newtonian Fluid Mech. 203(2014) 38-50. [19] M.D. Stocks, T. Bello-Ochende, J.P. Meyer, Maximum thermal conductance for a micro-channel, utilising Newtonian and non-Newtonian fluid, Heat Mass Transf. 50(6) (2014) 865-875. [20] S. Bijjam, A.K. Dhiman, CFD analysis of two-dimensional non-Newtonian power-law flow across a circular cylinder confined in a channel, Chem. Eng. Commun. 199(6) (2012) 767-785. [21] R. Mohebbi, M. Nazari, M. Kayhani, Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder, J. Appl. Mech. Tech. Phys. 57(1) (2016) 55-68. [22] T. Hayat, H. Yasmin, A. Alsaedi, Convective heat transfer analysis for peristaltic flow of power-law fluid in a channel, J. Braz. Soc. Mech. Sci. Eng. 37(2) (2015) 463-477. [23] M. Shojaeian, M. Yildiz, A. Koşar, Convective heat transfer and second law analysis of non-Newtonian fluid flows with variable thermophysical properties in circular channels, Int. Commun. Heat Mass Transfer 60(2015) 21-31. [24] S. Yigit, R.J. Poole, N. Chakraborty, Effects of aspect ratio on laminar Rayleigh-Bénard convection of power-law fluids in rectangular enclosures:A numerical investigation, Int. J. Heat Mass Transf. 91(2015) 1292-1307. [25] A.K. Baranwal, R.P. Chhabra, Free convection in confined power-law fluids from two side-by-side cylinders in a square enclosure, Heat Transfer Eng. (2016) 1-55. [26] N.S. Akbar, A.W. Butt, Heat transfer analysis for the peristaltic flow of Herschel-Bulkley fluid in a nonuniform inclined channel, Z. Naturforsch. A 70(2015) 23-32. [27] A.K. Dhiman, S. Kumar, Non-Newtonian power-law flow across a confined triangular bluff body in a channel, Korean J. Chem. Eng. 30(1) (2013) 33-44. [28] M.-H. Sun, X.-R. Zhang, Non-Newtonian nanofluid in a micro planar sudden expansion considering variable properties, Int. J. Therm. Sci. 107(2016) 316-329. [29] F. Nikfarjam, A. Sohankar, Power-law fluids flow and heat transfer over two tandem square cylinders:Effects of Reynolds number and power-law index, Acta Mech. 224(5) (2013) 1115-1132. [30] M. Bouhalleb, H. Abbassi, Pressure drop and heat transfer enhancement in a plane channel with a built-in bluff body:A comparison between triangular prism and square cylinder, Prog. Comput. Fluid Dyn. Int. J. 14(5) (2014) 295-303. [31] P.K. Rao, A.K. Sahu, R. Chhabra, Momentum and heat transfer from a square cylinder in power-law fluids, Int. J. Heat Mass Transf. 54(1) (2011) 390-403. [32] R.P. Bharti, D.J. Harvie, M.R. Davidson, Fully developed flow of power-law fluid through a cylindrical microfluidic pipe:Pressure drop and electroviscous effects, ASME 2008 Fluids Engineering Division Summer Meeting Collocated With the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences, American Society of Mechanical Engineers, 2008. [33] E.I. Borzenko, K. Boyarkina, G.R. Shrager, Pressure losses of power-law fluid flow through an axisymmetric sudden contraction, Key Eng. Mater. 685(2016) 47-50. [34] I.T. Dosunmu, S.N. Shah, Pressure drop predictions for laminar pipe flow of carreau and modified power law fluids, Can. J. Chem. Eng. 93(5) (2015) 929-934. [35] A. Babaie, M.H. Saidi, A. Sadeghi, Heat transfer characteristics of mixed electroosmotic and pressure driven flow of power-law fluids in a slit microchannel, Int. J. Therm. Sci. 53(2012) 71-79. [36] P. Li, Y. Xie, D. Zhang, Laminar flow and forced convective heat transfer of shear-thinning power-law fluids in dimpled and protruded microchannels, Int. J. Heat Mass Transf. 99(2016) 372-382. [37] D. Mei, L. Liang, M. Qian, X. Lou, Modeling and analysis of flow distribution in an A-type microchannel reactor, Int. J. Hydrog. Energy 38(35) (2013) 15488-15499. [38] S. Balaji, S. Lakshminarayanan, Improved design of microchannel plate geometry for uniform flow distribution, Can. J. Chem. Eng. 84(6) (2006) 715-721. [39] P.K. Swamee, N. Aggarwal, Explicit equations for laminar flow of Herschel-Bulkley fluids, Can. J. Chem. Eng. 89(6) (2011) 1426-1433. [40] N. Sahiti, A. Lemouedda, D. Stojkovic, F. Durst, E. Franz, Performance comparison of pin fin in-duct flow arrays with various pin cross-sections, Appl. Therm. Eng. 26(11) (2006) 1176-1192. [41] C. Zhao, E. Zholkovskij, J.H. Masliyah, C. Yang, Analysis of electroosmotic flow of power-law fluids in a slit microchannel, J. Colloid Interface Sci. 326(2) (2008) 503-510. [42] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, Wiley, New York, 2007. [43] M.R. Patel, Introduction to Electrical Power and Power Electronics, Taylor & Francis, London, 2012. [44] G.A. Stahl, D.N. Schulz, Water-soluble Polymers for Petroleum Recovery, Springer, New Jersey, 2012. |