[1] W. Yan, J. Li, Z. Luo, A CFD-PBM coupled model with polymerization kinetics for multizone circulating polymerization reactors, Powder Technol. 231(2012) 77-87. [2] W. Yan, Z. Luo, Y. Lu, X. Chen, A CFD-PBM-PMLM integrated model for the gas-solid flow fields in fluidized bed polymerization reactors, AICHE J. 58(2012) 1717-1732. [3] N. Qi, K. Zhang, G. Xu, Y. Yang, H. Zhang, CFD-PBE simulation of gas-phase hydrodynamics in a gas-liquid-solid combined loop reactor, Pet. Sci. 10(2013) 251-261. [4] E. Abbasi, J. Abbasian, H. Arastoopour, CFD-PBE numerical simulation of CO2 capture using MgO-based sorbent, Powder Technol. 286(2015) 616-628. [5] S. Kumar, D. Ramkrishna, On the solution of population balance equations by discretization-I. A fixed pivot technique, Chem. Eng. Sci. 51(1996) 1311-1332. [6] Y. Lin, K. Lee, T. Matsoukas, Solution of the population balance equation using constant-number Monte Carlo, Chem. Eng. Sci. 57(2002) 2241-2252. [7] A. Buffo, M. Vanni, D. Marchisio, R. Fox, Multivariate quadrature-based moments methods for turbulent polydisperse gas-liquid systems, Int. J. Multiphase Flow 50(2013) 41-57. [8] W. Zhang, C. You, Numerical approach to predict particle breakage in dense flows by coupling multiphase particle-in-cell and Monte Carlo methods, Powder Technol. 283(2015) 128-136. [9] M. Hussain, J. Kumar, E. Tsotsas, Modeling aggregation kinetics of fluidized bed spray agglomeration for porous particles, Powder Technol. 270(2015) 584-591. [10] R. McGraw, Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Technol. 27(1997) 255-265. [11] D. Marchisio, R. Fox, Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci. 36(2005) 43-73. [12] J. Su, Z. Gu, Y. Li, S. Feng, X. Xu, An adaptive direct quadrature method of moment for population balance equations, AICHE J. 54(2008) 2872-2887. [13] M. Yu, J. Lin, T. Chan, A new moment method for solving the coagulation equation for particles in Brownian motion, Aerosol Sci. Technol. 42(2008) 705-713. [14] C. Yuan, F. Laurent, R. Fox, An extended quadrature method of moments for population balance equations, J. Aerosol Sci. 51(2012) 1-23. [15] J. Cheng, C. Yang, Z. Mao, C. Zhao, CFD modeling of nucleation, growth, aggregation, and breakage in continuous precipitation of barium sulfate in a stirred tank, Ind. Eng. Chem. Res. 48(2009) 6992-7003. [16] P. Lage, On the representation of QMOM as a weighted-residual method-the dualquadrature method of generalized moments, Comput. Chem. Eng. 35(2011) 2186-2203. [17] J. Cheng, C. Yang, Z. Mao, CFD-PBE simulation of premixed continuous precipitation incorporating nucleation, growth and aggregation in a stirred tank with multi-class method, Chem. Eng. Sci. 68(2012) 469-480. [18] J. Pedel, J. Thornock, P. Smith, Large eddy simulation of pulverized coal jet flame ignition using the direct quadrature method of moments, Energy Fuel 26(2012) 6686-6694. [19] R. Upadhyay, Evaluation of the use of the Chebyshev algorithm with the quadrature method of moments for simulating aerosol dynamics, J. Aerosol Sci. 44(2012) 11-23. [20] C. Frances, A. Liné, Comminution process modeling based on the monovariate and bivariate direct quadrature method of moments, AICHE J. 60(2014) 1621-1631. [21] Y. Yao, J. Su, Z. Luo, CFD-PBM modeling polydisperse polymerization FBRs with simultaneous particle growth and aggregation:the effect of the method of moments, Powder Technol. 272(2015) 142-152. [22] M. Attarakih, M. Hlawitschka, M. Abu-Khader, S. Al-Zyod, H. Bart, CFD-population balance modeling and simulation of coupled hydrodynamics and mass transfer in liquid extraction columns, Appl. Math. Model. 39(2015) 5105-5120. [23] M. Yu, Y. Liu, J. Lin, M. Seipenbusch, Generalized TEMOM scheme for solving the population balance equation, Aerosol Sci. Technol. 49(2015) 1021-1036. [24] X. Liang, H. Pan, Y. Su, Z. Luo, CFD-PBM approach with modified drag model for the gas-liquid flow in a bubble column, Chem. Eng. Res. Des. 112(2016) 88-102. [25] H. Pan, X. Chen, X. Liang, L. Zhu, Z. Luo, CFD simulations of gas-liquid-solid flow in fluidized bed reactors-a review, Powder Technol. 299(2016) 235-258. [26] C. Coulaloglou, L. Tavlarides, Description of interaction processes in agitated liquid-liquid dispersions, Chem. Eng. Sci. 32(1977) 1289-1297. [27] M. Konno, M. Aoki, S. Saito, Scale effect on breakup process in liquid-liquid agitated tanks, J. Chem. Eng. Jpn 16(1983) 312-319. [28] H. Luo, H. Svendsen, Theoretical model for drop and bubble breakup in turbulent dispersions, AICHE J. 42(1996) 1225-1233. [29] T. Wang, J. Wang, Y. Jin, A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow, Chem. Eng. Sci. 58(2003) 4629-4637. [30] J. Bałdyga, J. Bourne, Interpretation of turbulent mixing using fractals and multifractals, Chem. Eng. Sci. 50(1995) 381-400. [31] J. Bałdyga, W. Podgórska, Drop break-up in intermittent turbulence:maximum stable and transient sizes of drops, Can. J. Chem. Eng. 76(1998) 456-470. [32] C. Martínez-Bazán, J. Montañés, J. Lasheras, On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency, J. Fluid Mech. 401(1999) 157-182. [33] J.C. Lasheras, C. Eastwooda, C. Martínez-Bazán, J. Montañés, A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow, Int. J. Multiphase Flow 28(2002) 247-278. [34] F. Lehr, D. Mewes, A transport equation for the interfacial area density in two-phase flow,SecondEuropeanCongressofChemicalEngineering,Montpellier,France, 1999. [35] F. Lehr, D. Mewes, A transport equation for the interfacial area density applied to bubble columns, Chem. Eng. Sci. 56(2001) 1159-1166. [36] F. Lehr, M. Millies, D. Mewes, Bubble-size distributions and flow fields in bubble columns, AICHE J. 48(2002) 2426-2443. [37] T. Wang, J. Wang, J. Jin, An efficient numerical algorithm for a novel theoretical breakup kernel function of bubble/droplet in a turbulent flow, Chem. Eng. Sci. 59(2004) 2593-2595. [38] F. Ghasempour, R. Andersson, B. Andersson, D. Bergstrom, Number density of turbulent vortices in the entire energy spectrum, AICHE J. 60(11) (2014) 3989-3995. [39] L. Han, S. Gong, Y. Li, Q. Ai, H. Luo, Z. Liu, Y. Liu, A novel theoretical model of breakage rate and daughter size distribution for droplet in turbulent flows, Chem. Eng. Sci. 102(2013) 186-199. [40] L. Han, S. Gong, Y. Li, N. Gao, J. Fu, Z. Liu, et al., Influence of energy spectrum distribution on drop breakage in turbulent flows, Chem. Eng. Sci. 117(2014) 55-70. [41] J. Solsvik, H. Jakobsen, Development of fluid particle breakup and coalescence closure models for the complete energy spectrum of isotropic turbulence, Ind. Eng. Chem. Res. 55(2016) 1449-1460. [42] A. Bąk, W. Podgórska, Investigation of drop breakage and coalescence in the liquid-liquid system with nonionic surfactants Tween 20 and Tween 80, Chem. Eng. Sci. 74(2012) 181-191. [43] A. Bąk, W. Podgórska, Drop breakage and coalescence in the toluene/water dispersions with dissolved surface active polymers PVA 88% and 98%, Chem. Eng. Res. Des. 91(2013) 2142-2155. [44] A. Koshy, T. Das, R. Kumar, Effect of surfactants on drop breakage in turbulent liquid dispersions, Chem. Eng. Sci. 43(1988) 649-654. [45] V. Alopaeus, J. Koskinen, K. Keskinen, J. Majander, Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 2-parameter fitting and the use of the multiblock model for dense dispersions, Chem. Eng. Sci. 57(2002) 1815-1825. [46] Z. Gao, D. Li, A. Buffo, W. Podgórska, D. Marchisio, Simulation of droplet breakage in turbulent liquid-liquid dispersions with CFDPBM:comparison of breakage kernels, Chem. Eng. Sci. 142(2016) 277-288. [47] D. Li, A. Buffo, W. Podgórska, Z. Gao, D. Marchisio, Droplet breakage and coalescence in liquid-liquid dispersions:comparison of different kernels with EQMOM and QMOM, AIChE J. 63(2017) 2293-2311. [48] W. Podgórska, D. Marchisio, Modeling of turbulent drop coalescence in the presence of electrostatic forces, Chem. Eng. Res. Des. 108(2016) 30-41. [49] A. Buffo, J. De Bona, M. Vanni, D. Marchisio, Simplified volume-averaged models for liquid-liquid dispersions:correct derivation and comparison with other approaches, Chem. Eng. Sci. 153(2016) 382-393. [50] J. De Bona, A. Buffo, M. Vanni, D. Marchisio, Limitations of simple mass transfer models in polydisperse liquid-liquid dispersions, Chem. Eng. J. 296(2016) 112-121. [51] A. Buffo, D. Marchisio, M. Vanni, P. Renze, Simulation of polydisperse multiphase systems using population balances and example application to bubbly flows, Chem. Eng. Res. Des. 91(2013) 1859-1875. [52] A. Buffo, D. Marchisio, M. Vanni, On the implementation of moment transport equations in OpenFOAM to preserve conservation, boundedeness and realizability, International Conference on Multiphase Flows in Industrial Plants, Sestri Levante, September 16-19, 2014. [53] D. Drew, Mathematical modeling of two-phase flow, Annu. Rev. Fluid Mech. 15(1982) 261-291. [54] D. Drew, S. Passman, Theory of Multicomponent Fluids, vol. 135, Springer, 2006. [55] A. Gosman, C. Lekakou, S. Politis, R. Issa, M. Looney, Multidimensional modeling of turbulent two-phase flows in stirred vessels, AICHE J. 38(1992) 1946-1956. [56] L. Schiller, A. Naumann, A drag coefficient correlation, VDI Zeitung 77(1935) 51-86. [57] A. Behzadi, R. Issa, H. Rusche, Modelling of dispersed bubble and droplet flow at high phase fractions, Chem. Eng. Sci. 59(2004) 759-770. [58] M. Petitti, A. Nasuti, D. Marchisio, M. Vanni, G. Baldi, N. Mancini, F. Podenzani, Bubble size distribution modeling in stirred gas-liquid reactors with QMOM augmented by a new correction algorithm, AICHE J. 56(2010) 36-53. [59] G. Montante, K. Lee, A. Brucato, M. Yianneskis, Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels, Chem. Eng. Sci. 56(2001) 3751-3770. [60] E. Paul, V. Atiemo-Obeng, S. Kresta, Handbook of Industrial Mixing:Science and Practice, John Wiley & Sons, 2004. [61] J. Aubin, D. Fletcher, C. Xuereb, Modeling turbulent flow in stirred tanks with CFD:the influence of the modeling approach, turbulence model and numerical scheme, Exp. Thermal Fluid Sci. 28(2004) 431-445. [62] C. Wang, R. Calabrese, Drop breakup in turbulent stirred-tank contactors. Part Ⅱ:relative influence of viscosity and interfacial tension, AICHE J. 32(1986) 667-676. [63] A. Gäbler, M. Wegener, A. Paschedag, M. Kraume, The effect of pH on experimental and simulation results of transient drop size distributions in stirred liquid-liquid dispersions, Chem. Eng. Sci. 61(2006) 3018-3024. [64] S. Maaß, N. Paul, M. Kraume, Influence of the dispersed phase fraction on experimental and predicted drop size distributions in breakage dominated stirred systems, Chem. Eng. Sci. 76(2012) 140-153. [65] D. Ramkrishna, Population Balances:Theory and Applications to Particulate Systems in Engineering, Academic Press, 2000. [66] D. Marchisio, R. Vigil, R. Fox, Quadrature method of moments for aggregation-breakage processes, J. Colloid Interface Sci. 258(2003) 322-334. [67] D. Marchisio, R. Fox, Computational Models for Polydisperse Particulate and Multiphase Systems, Cambridge University Press, 2013. [68] C. Martínez-Bazán, J. Montañés, J. Lasheras, On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles, J. Fluid Mech. 401(1999) 183-207. [69] C. Tsouris, L. Tavlarides, Breakage and coalescence models for drops in turbulent dispersions, AICHE J. 40(1994) 395-406. [70] Y. Liao, D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci. 64(2009) 3389-3406. [71] M. Laakkonen, V. Alopaeus, J. Aittamaa, Validation of bubble breakage, coalescence and mass transfer models for gas-liquid dispersion in agitated vessel, Chem. Eng. Sci. 61(2006) 218-228. [72] R. Andersson, B. Andersson, On the breakup of fluid particles in turbulent flows, AICHE J. 52(2006) 2020-2030. [73] S. Maaß, F. Metz, T. Rehm, M. Kraume, Prediction of drop sizes for liquid-liquid systems in stirred slim reactors-part I:single stage impellers, Chem. Eng. J. 162(2010) 792-801. [74] G. Narsimhan, J. Gupta, D. Ramkrishna, A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions, Chem. Eng. Sci. 34(1979) 257-265. [75] K. Singh, S. Mahajani, K. Shenoy, S. Ghosh, Population balance modeling of liquid-liquid dispersions in homogeneous continuous-flow stirred tank, Ind. Eng. Chem. Res. 48(2009) 8121-8133. [76] S. Maaß, M. Kraume, Determination of breakage rates using single drop experiments, Chem. Eng. Sci. 70(2012) 146-164. [77] G. Batchelor, The Theory of Homogeneous Turbulence, Cambridge University Press, 1953. [78] C. Meneveau, K. Sreenivasan, The multifractal nature of turbulent energy dissipation, J. Fluid Mech. 224(1991) 429-484. [79] J. Luo, R. Issa, A. Gosman, Prediction of impeller-induced flow in mixing vessels using multiple frames of reference, 8th European Conference on Mixing, Cambridge, 1994. [80] R. Issa, A. Gosman, A. Watkins, The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme, J. Comput. Phys. 62(1986) 66-82. [81] M. Vonka, M. Soos, Characterization of liquid-liquid dispersions with variable viscosity by coupled computational fluid dynamics and population balances, AICHE J. 61(2015) 2403-2414. |