[1] F. Scargiali, A. Busciglio, F. Grisafi, A. Brucato, Mass transfer and hydrodynamic characteristics of unbaffled stirred bio-reactors: Influence of impeller desig, Biochem. Eng. J. 82 (1) (2014) 41-47 [2] M.N. Chen, J. Wang, S. Zhao, Optimization of dual-impeller conFigureurations in a gas-liquid stirred tank based on computational fluid dynamics and multiobjective evolutionary algorithm, Ind. Eng. Chem. Res. 55 (33) (2016) 9054-9063 [3] R. Rakoczy, M. Konopacki, J. Lechowska, M. Bubnowska, A. Hürter, M. Kordas, K. Fijałkowski, Gas to liquid mass transfer in mixing system with application of rotating magnetic field, Chem. Eng. Process. 130 (2018) 11-18 [4] A.R. Khopkar, J. Aubin, C. Xuereb, N.L. Le Sauze, J. Bertrand, V.V. Ranade, Gas-liquid flow generated by a pitched-blade turbine: Particle image velocimetry measurements and computational fluid dynamics simulations, Ind. Eng. Chem. Res. 42 (21) (2003) 5318-5332 [5] H.N. Wang, X.Q. Jia, X. Wang, Z.X. Zhou, J.P. Wen, J.L. Zhang, CFD modeling of hydrodynamic characteristics of a gas-liquid two-phase stirred tank, Appl. Math. Model. 38 (1) (2014) 63-92 [6] S.U. Ahmed, P. Ranganathan, A. Pandey, S. Sivaraman, Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor, J. Biosci. Bioeng. 109 (6) (2010) 588-597 [7] B. Hu, A.W. Pacek, E.H. Stitt, A.W. Nienow, Bubble sizes in agitated air-alcohol systems with and without particles: Turbulent and transitional flow, Chem. Eng. Sci. 60 (22) (2005) 6371-6377 [8] L.C. Han, Y.J. Liu, H.A. Luo, Numerical simulation of gas holdup distribution in a standard rushton stirred tank using discrete particle method, Chin. J. Chem. Eng. 15 (6) (2007) 808-813 [9] F. Khalili, M.R. Jafari, A. Kazemzadeh, F. Ein-Mozaffari, Analysis of gas holdup and bubble behavior in a biopolymer solution inside a bioreactor using tomography and dynamic gas disengagement techniques, J. Chem. Technol. Biotechnol. 93 (2) (2018) 340-349 [10] S.D. Shewale, A.B. Pandit, Studies in multiple impeller agitated gas-liquid contactors, Chem. Eng. Sci. 61 (2) (2005) 489-504 [11] M. Bouaifi, G. Hebrard, D. Bastorul, A comparative study of gas holdup, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns, Chem. Eng. Process. 40 (2) (2011) 97-111 [12] S.Q. Zheng, Y. Yao, F.F. Guo, R.S. Bi, J.Y. Li, Local bubble size distribution, gas-liquid interfacial areas and gas holdups in an up-flow ejector, Chem. Eng. Sci. 65 (18) (2010) 5264-5271 [13] M.H. Xie, J.Y. Xia, Z. Zhou, Flow pattern, mixing, gas holdup and mass transfer coefficient of triple-impeller conFigureurations in stirred tank bioreactors, Ind. Eng. Chem. Res. 53 (14) (2014) 5941-5953 [14] P.R. Gogate, A.A. Beenackers, A.B. Pandit, Multiple-impeller systems with a special emphasis on bioreactors: A critical review, Biochem. Eng. J. 6 (2) (2000) 109-144 [15] D. Pinelli, A. Bakker, K.J. Myers, M.F. Reeder, J. Fasano, F. Magell, Some features of a novel gas dispersion impeller in a dual-impeller conFigureuration, Chem. Eng. Res. Des. 81 (4) (2003) 448-454 [16] M. Laakkonen, M. Honkanen, P. Saarenrinne, J. Aittamaa, Local bubble size distributions, gas-liquid interfacial areas and gas holdups in a stirred vessel with particle image velocimetry, Chem. Eng. J. 109 (1-3) (2005) 37-47 [17] G. Montante, D. Horn, A. Paglianti, Gas-liquid flow and bubble size distribution in stirred tanks, Chem. Eng. Sci. 63 (8) (2008) 2107-2118 [18] B.C.H. Venneker, J.J. Derksen, H.A. Akker, Population balance modeling of aerated stirred vessels based on CFD, AIChE. J 48 (4) (2002) 673-685 [19] J. Min, Y.Y. Bao, Z.M. Gao, Numerical simulation of gas dispersion in an aerated reactor with multiple impellers, Ind. Eng. Chem. Res. 47 (18) (2008) 7112-7117 [20] Y.Y. Bao, B.J. Wang, M.L. Lin, Z.M. Gao, J. Yang, Influence of impeller diameter on overall gas dispersion properties in a sparged multi-impeller stirred tank, Chin. J. Chem. Eng. 23 (6) (2015) 890-896 [21] F.L. Yang, S.J. Zhou, X.H. An, Gas-liquid hydrodynamics in a vessel stirred by dual dislocated-blade Rushton impellers, Chin. J. Chem. Eng. 23 (11) (2015) 1746-1754 [22] V.V. Ranade, M. Perrard, C. Xuereb, N. Le Sauze, J. Bertrand, Influence of gas flow rate on the structure of trailing vortices of a rushton turbine: PIV measurements and CFD simulations, Chem. Eng. Res. Des. 79 (8) (2001) 957-964 [23] J. Aubin, N. Le, J. Bertrand, D.F. Fletcher, C. Xuereb, PIV measurements of flow in an aerated tank stirred by a down- and an up-pumping axial flow impeller, Exp. Therm. Fluid. Sci. 28 (5) (2004) 447-456 [24] H. Zhu, A.W. Nienow, W. Bujalski, J.H. Mark, Mixing studies in a model aerated bioreactor equipped with an up- or a down-pumping ‘Elephant Ear’ agitator: Power, hold-up and aerated flow field measurements, Chem. Eng. Res. Des. 87 (3) (2008) 307-317 [25] X.B. Zhang, Z.H. Luo, Effects of bubble coalescence and breakup models on the simulation of bubble columns, Chem. Eng. Sci. 226 (2020) 115850 [26] X.B. Zhang, R.Q. Zheng, Z.H. Luo, CFD-PBM simulation of bubble columns: Effect of parameters in the class method for solving PBEs, Chem. Eng. Sci. 226 (2020) 115853 [27] D.Y. Gu, Z.H. Liu, C.Y. Tao, Numerical simulation of gas-liquid dispersion in a stirred tank agitated by punched rigid-flexible impeller, Int. J. Chem. React. Eng. 17 (4) (2019) 1-17 [28] J.J. Zhang, Z.M. Gao, Y.T. Cai, Z.Q. Cai, J. Yang, Y.Y. Bao, Mass transfer in gas-liquid stirred reactor with various triple-impeller combinations, Chin. J. Chem. Eng. 24 (6) (2016) 703-710 [29] Y.Y. Bao, L. Chen, Z.M. Gao, J.F. Chen, Local void fraction and bubble size distributions in cold -gassed and hot-sparged stirred reactors, Chem. Eng. Sci. 65 (2009) 976-984 [30] M.O. Cerri, J.C. Baldacin, A.G. Cruz, C.O. Hokka, A.C. Badino, Prediction of mean bubble size in pneumatic reactors, Biochem. Eng. J. 53 (1) (2010) 12-17 [31] W. Kelly, B. Gigas, Using CFD to predict the behavior of power law fluids near axial-flow impellers operating in the transitional flow regime, Chem. Eng. Sci. 58 (10) (2003) 2141-2152 [32] T.T. Devi, B. Kumar, Mass transfer and power characteristics of stirred tank with rushton and curved blade impeller, Eng. Sci. Technol. 20 (2016) 730-737 [33] R. Gelves, A. Dietrich, R. Takors, Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a rushton turbine or a new pitched blade impeller, Bioproc. Biosyst. Eng. 37 (3) (2014) 365-375 [34] P. Ranganathan, S. Sivaraman, Investigations on hydrodynamics and mass transfer in gas-liquid stirred reactor using computational fluid dynamics, Chem. Eng. Sci. 66 (14) (2011) 3108-3124 [35] D. Pfleger, S. Becker, Modelling and simulation of the dynamic flow behaviour in a bubble column, Chem. Eng. Sci. 56 (4) (2001) 1737-1747 [36] G. Li, X.G. Yang, G.C. Dai, CFD simulation of effects of the conFigureuration of gas distributors on gas-liquid flow and mixing in a bubble column, Chem. Eng. Sci. 64 (24) (2009) 5104-5116 [37] M. Ishii, N. Zuber, Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J. 25 (1979) 843-855 [38] A. Buffo, M. Vanni, D.L. Marchisio, Multidimensional population balance model for the simulation of turbulent gas-liquid systems in stirred tank reactors, Chem. Eng. Sci. 70 (10) (2012) 31-44 [39] M. Petitti, A. Nasuti, D.L. Marchisio, M. Vanni, G. Baldi, N. Mancini, F. Podenzani, Bubble size distribution modeling in stirred gas-liquid reactors with QMOM augmented by a new correction algorithm, AIChE J. 56 (1) (2010) 36-53 [40] F. Ren, N.A. Noda, T. Ueda, CFD-PBM approach for the gas-liquid flow in a nanobubble generator with honeycomb structure, J. Disper Sci. Technol. 40 (2) (2018) 306-317 [41] M.A. Sattar, J. Naser, G. Brooks, Numerical simulation of two-phase flow with bubble break-up and coalescence coupled with population balance modeling, Chem. Eng. Process. 70 (7) (2013) 66-76 [42] H. Luo, H. Svendsen, Theoretical model for drop and bubble break-up in turbulent dispersion, AIChE J. 42 (5) (1996) 1225-1233 [43] S.S. Alves, C.I. Maia, J.M.T. Vasconcelos, A.J. Serralheiro, Bubble size in aerated stirred tanks, Chem. Eng. J. 89 (9) (2002) 109-117 |