[1] S.S. Dukhin, M. Lotfi, V.I. Kovalchuk, D. Bastani, R. Miller, Dynamics of rear stagnant cap formation at the surface of rising bubbles in surfactant solutions at large Reynolds and Marangoni numbers and for slow sorption kinetics, Colloids Surfaces A:Physicochem. Eng. Aspects 492 (2016) 127-137 [2] T.J. Chuang, Y.H. Chang, Y.M. Ferng, Investigating effects of heating orientations on nucleate boiling heat transfer, bubble dynamics, and wall heat flux partition boiling model for pool boiling, Appl. Therm. Eng. 163 (2019) 114358 [3] G. Cheng, Z.Y. Li, Y.J. Cao, Z.D. Jiang, Research progress in lignite flotation intensification, Int. J. Coal Prep. Util. 40 (1) (2020) 59-76 [4] T.M. McCoy, H.C.W. Parks, R.F. Tabor, Highly efficient recovery of graphene oxide by froth flotation using a common surfactant, Carbon 135 (2018) 164-170 [5] L. Gemello, V. Cappello, F. Augier, D. Marchisio, C. Plais, CFD-based scale-up of hydrodynamics and mixing in bubble columns, Chem. Eng. Res. Des. 136 (2018) 846-858 [6] S.S. Al-Shahrani, S.A. Nosier, A.H. El-Shazly, M.H. Abdel-Aziz, Effect of surfactants on mass transfer in a bubble column equipped with a horizontal tube bundles, Int. Commun. Heat Mass Transf. 113 (2020) 104548 [7] Z. Ahmed, D. Izbassarov, J.C. Lu, G. Tryggvason, M. Muradoglu, O. Tammisola, Effects of soluble surfactant on lateral migration of a bubble in a pressure driven channel flow, Int. J. Multiph. Flow 126 (2020) 103251 [8] K. Hayashi, A. Tomiyama, Effects of surfactant on lift coefficients of bubbles in linear shear flows, Int. J. Multiph. Flow 99 (2018) 86-93 [9] D.S. Guo, X.B. Li, H.N. Zhang, F.C. Li, W.T. Su, Vapor bubble-bubble penetration during subcooled pool boiling in a nonionic surfactant aqueous solution, Int. J. Heat Mass Transf. 159 (2020) 120142 [10] M. Muradoglu, G. Tryggvason, Simulations of soluble surfactants in 3D multiphase flow, J. Comput. Phys. 274 (2014) 737-757 [11] H.A. Stone, Dynamics of drop deformation and breakup in viscous fluids, Annu. Rev. Fluid Mech. 26 (1) (1994) 65-102 [12] E.K. Zholkovskij, V.I. Koval'Chuk, S.S. Dukhin, R. Miller, Dynamics of rear stagnant cap formation at low Reynolds numbers:1. Slow sorption kinetics, J. Colloid Interface Sci. 226 (1) (2000) 51-59 [13] A. Alke, D. Bothe, 3D Numerical modeling of soluble surfactant at fluidic interfaces based on the volume-of-fluid method, Fluid Dyn. Mater. Process. 5 (4) (2009) 345-372 [14] K. Hayashi, A. Tomiyama, Effects of surfactant on terminal velocity of a Taylor bubble in a vertical pipe, Int. J. Multiph. Flow 39 (2012) 78-87 [15] A. Dani, A. Cockx, P. Guiraud, Direct numerical simulation of mass transfer from spherical bubbles:The effect of interface contamination at low Reynolds numbers, Int. J. Chem. React. Eng. 4 (1) (2006), https://doi.org/10.2202/1542-6580.1304 [16] Y. Fei, M.J. Pang, A treatment for contaminated interfaces and its application to study the hydrodynamics of a spherical bubble contaminated by surfactants, Chem. Eng. Sci. 200 (2019) 87-102 [17] N. Kishore, V.S. Nalajala, Heat transfer from confined contaminated bubbles to power-law liquids at low to moderate Reynolds and Prandtl numbers, Heat Trans. Asian Res. 46 (7) (2017) 681-702 [18] C. Pesci, A. Weiner, H. Marschall, D. Bothe, Computational analysis of single rising bubbles influenced by soluble surfactant, J. Fluid Mech. 856 (2018) 709-763 [19] T.A. Johnson, V.C. Patel, Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech. 378 (1999) 19-70 [20] S. Takagi, Y. Matsumoto, Surfactant effects on bubble motion and bubbly flows, Annu. Rev. Fluid Mech. 43 (1) (2011) 615-636 [21] A. Saboni, S. Alexandrova, M. Mory, Flow around a contaminated fluid sphere, Int. J. Multiph. Flow 36 (6) (2010) 503-512 [22] M.T. Islam, A.V. Nguyen, The fore-and-aft asymmetry of the bubble-particle collision interaction in the non-turbulent regime of multiphase bubble-particle suspension flows, Colloids Surfaces A:Physicochem. Eng. Aspects 585 (2020) 124085 [23] M. Koebe, D. Bothe, J. Pruess, H.J. Warnecke, 3D direct numerical simulation of air bubbles in water at high Reynolds number, Proceedings of ASME 2002 Joint U.S.-European Fluids Engineering Division Conference, Montreal, Quebec, Canada, 2002. [24] V.A. Arkhipov, A.S. Usanina, S.A. Basalaev, L.E. Kalichkina, V.S. Mal'Kov, Dynamics of bubble cluster rising in the presence of a surfactant, Fluid Dyn. 55 (1) (2020) 103-110 [25] S. Hosokawa, K. Hayashi, A. Tomiyama, Evaluation of adsorption of surfactant at a moving interface of a single spherical drop, Exp. Therm. Fluid Sci. 96 (2018) 397-405 [26] S. Hosokawa, Y. Masukura, K. Hayashi, A. Tomiyama, Experimental evaluation of Marangoni stress and surfactant concentration at interface of contaminated single spherical drop using spatiotemporal filter velocimetry, Int. J. Multiph. Flow 97 (2017) 157-167 [27] S. Takagi, T. Ogasawara, M. Fukuta, Y. Matsumoto, Surfactant effect on the bubble motions and bubbly flow structures in a vertical channel, Fluid Dyn. Res. 41 (6) (2009) 065003 [28] R. Bel Fdhila, P.C. Duineveld, The effect of surfactant on the rise of a spherical bubble at high Reynolds and Peclet numbers, Phys. Fluids 8 (2) (1996) 310-321 [29] W. Lee, J.Y. Lee, Experiment and modeling of lift force acting on single high Reynolds number bubbles rising in linear shear flow, Exp. Therm. Fluid Sci. 115 (2020) 110085 [30] M. Fukuta, S. Takagi, Y. Matsumoto, Numerical study on the shear-induced lift force acting on a spherical bubble in aqueous surfactant solutions, Phys. Fluids 20 (4) (2008) 040704 [31] S. Tasoglu, U. Demirci, M. Muradoglu, The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble, Phys. Fluids 20 (4) (2008) 040805 [32] H.W. Jia, P. Zhang, Mass transfer of a rising spherical bubble in the contaminated solution with chemical reaction and volume change, Int. J. Heat Mass Transf. 110 (2017) 43-57 [33] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978 [34] V.G. Levich, Physicochemical Hydrodydynamics, Prentice Hall, Englewood Cliffs, 1962 [35] B. Cuenot, J. Magnaudet, B. Spennato, The effects of slightly soluble surfactants on the flow around a spherical bubble, J. Fluid Mech. 339 (1997) 25-53 [36] R. Mittal, F. Najjar, Vortex dynamics in the sphere wake, 30th Fluid Dynamics Conference. Norfolk, VA, USA, 1999 [37] A. Saboni, S. Alexandrova, C. Gourdon, Détermination de la traınée engendrée par une sphère fluide en translation, Chem. Eng. J. 98 (1-2) (2004) 175-182 [38] R. Mei, History force on a sphere due to a step change in the free-stream velocity, Int. J. Multiph. Flow 19 (3) (1993) 509-525 [39] Y.P. Wang, D.T. Papageorgiou, C. Maldarelli, Using surfactants to control the formation and size of wakes behind moving bubbles at order-one Reynolds numbers, J. Fluid Mech. 453 (2002) 1-19 [40] S. Fleckenstein, D. Bothe, Simplified modeling of the influence of surfactants on the rise of bubbles in VOF-simulations, Chem. Eng. Sci. 102 (2013) 514-523 |