中国化学工程学报 ›› 2022, Vol. 45 ›› Issue (5): 258-267.DOI: 10.1016/j.cjche.2021.07.003
Minxia Liu, Dang Wu, Dongling Qin, Gang Yang
收稿日期:
2021-02-22
修回日期:
2021-06-28
出版日期:
2022-05-28
发布日期:
2022-06-22
通讯作者:
Gang Yang,E-mail:yanggang@njtech.edu.cn
基金资助:
Minxia Liu, Dang Wu, Dongling Qin, Gang Yang
Received:
2021-02-22
Revised:
2021-06-28
Online:
2022-05-28
Published:
2022-06-22
Contact:
Gang Yang,E-mail:yanggang@njtech.edu.cn
Supported by:
摘要: A spray-drying assisted solid-state method to prepare spherical layer-structured H2TiO3 ion sieve (LSTIS) particles is reported herein. The effects of synthesis parameters (calcination temperature, calcination time, and the lithium-titanium molar ratio) on adsorption–desorption performance (the delithiation ratio, titanium dissolution loss, and the adsorption capacity) were investigated. The as-prepared LSTIS exhibited an equilibrium adsorption capacity of 30.08 mg·g-1 (average of 25.85 mg·g-1 over 5 cycles) and ultra-low titanium dissolution loss of less than 0.12% (average of 0.086% over 5 cycles). The LSTIS showed excellent selectivity toward Li+ in Na+, K+, Mg2+, and Ca2+ coexisting saline solutions where its adsorption capacity reached 27.45 mg·g-1 and the separation factors of Li+ over the coexisting cations exceeded 100. The data suggests that the LSTIS is promising to competitively enrich Li+ from saline solutions.
Minxia Liu, Dang Wu, Dongling Qin, Gang Yang. Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance[J]. 中国化学工程学报, 2022, 45(5): 258-267.
Minxia Liu, Dang Wu, Dongling Qin, Gang Yang. Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance[J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 258-267.
[1] Q.W. Ran, H.Y. Zhao, Y.Z. Hu, S. Hao, Q.Q. Shen, J.T. Liu, H. Li, Y. Xiao, L. Li, L.P. Wang, X.Q. Liu, Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2cathode for advanced lithium-ion batteries at high cutoff voltage, ACS Appl. Mater. Interfaces 12 (8) (2020) 9268-9276 [2] Y.Z. Hu, H.Y. Zhao, M. Tan, J.T. Liu, X.H. Shu, M.L. Zhang, S.S. Liu, Q.W. Ran, H. Li, X.Q. Liu, Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance, J. Mater. Sci. Technol. 55 (2020) 173-181 [3] H.Y. Zhao, S.S. Liu, Y. Cai, Z.W. Wang, M. Tan, X.Q. Liu, A simple and mass production preferred solid-state procedure to prepare the LiSixMgxMn2-2xO4 (0 ≤ x ≤ 0.10) with enhanced cycling stability and rate capability, J. Alloy. Compd. 671 (2016) 304-311 [4] M.L. Zhang, M. Tan, H.Y. Zhao, S.S. Liu, X.H. Shu, Y.Z. Hu, J.T. Liu, Q.W. Ran, H. Li, X.Q. Liu, Enhanced high-voltage cycling stability and rate capability of magnesium and titanium co-doped lithium cobalt oxides for lithium-ion batteries, Appl. Surf. Sci. 458 (2018) 111-118 [5] H.Y. Zhao, S.S. Liu, Z.W. Wang, Y. Cai, M. Tan, X.Q. Liu, LiSixMn2-xO4 (x ≤ 0.10) cathode materials with improved electrochemical properties prepared via a simple solid-state method for high-performance lithium-ion batteries, Ceram. Int. 42 (12) (2016) 13442-13448 [6] H.Y. Zhao, X.Y. Gao, Y.F. Li, Q.W. Ran, C.G. Fu, Y.P. Feng, J.T. Liu, X.Q. Liu, J.X. Su, Synergistic effects of zinc-doping and nano-rod morphology on enhancing the electrochemical properties of spinel Li-Mn-O material, Ceram. Int. 45 (14) (2019) 17591-17597 [7] Q.W. Ran, H.Y. Zhao, Y.Z. Hu, Q.Q. Shen, W. Liu, J.T. Liu, X.H. Shu, M.L. Zhang, S.S. Liu, M. Tan, H. Li, X.Q. Liu, Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries at high cut-off voltage, Electrochimica Acta 289 (2018) 82-93 [8] H.Y. Zhao, S.S. Liu, Z.W. Wang, Y. Cai, M. Tan, X.Q. Liu, Enhanced elevated-temperature performance of LiAlxSi0.05Mg0.05Mn1.90-xO4 (0 ≤ x ≤ 0.08) cathode materials for high-performance lithium-ion batteries, Electrochimica Acta 199 (2016) 18-26 [9] Q.W. Ran, H.Y. Zhao, Y.Z. Hu, S. Hao, J.T. Liu, H. Li, X.Q. Liu, Enhancing surface stability of LiNi0.8Co0.1Mn0.1O2 cathode with hybrid core-shell nanostructure induced by high-valent titanium ions for Li-ion batteries at high cut-off voltage, J. Alloy. Compd. 834 (2020) 155099 [10] H.Y. Zhao, F. Li, X.H. Shu, J.T. Liu, T.T. Wu, Z.K. Wang, Y.F. Li, J.X. Su, Environment-friendly synthesis of high-voltage LiNi0.5Mn1.5O4 nanorods with excellent electrochemical properties, Ceram. Int. 44 (16) (2018) 20575-20580 [11] H.Y. Zhao, J. Wang, G.F. Wang, S.S. Liu, M. Tan, X.Q. Liu, S. Komarneni, Facile synthesis of orthorhombic LiMnO2 nanorods by in situ carbothermal reduction:Promising cathode material for Li ion batteries, Ceram. Int. 43 (13) (2017) 10585-10589 [12] H.Y. Zhao, Y.F. Nie, Y.F. Li, T.T. Wu, E.Q. Zhao, J.X. Song, S. Komarneni, Low-cost and eco-friendly synthesis of octahedral LiMn2O4 cathode material with excellent electrochemical performance, Ceram. Int. 45 (14) (2019) 17183-17191 [13] X.H. Shu, H.Y. Zhao, Y.Z. Hu, J.T. Liu, M. Tan, S. Liu, M.L. Zhang, Q.W. Ran, H. Li, X.Q. Liu, Magnesium and silicon co-doped LiNi0.5Mn1.5O4 cathode material with outstanding cycling stability for lithium-ion batteries, Vacuum 156 (2018) 1-8 [14] H.Y. Zhao, S.S. Liu, X.Q. Liu, M. Tan, Z.W. Wang, Y. Cai, S. Komarneni, Orthorhombic LiMnO2 nanorods as cathode materials for lithium-ion batteries:Synthesis and electrochemical properties, Ceram. Int. 42 (7) (2016) 9319-9322 [15] H.Y. Zhao, Y.F. Li, D.H. Shen, Q.S. Yin, Q.W. Ran, Significantly enhanced electrochemical properties of LiMn2O4-based composite microspheres embedded with nano-carbon black particles, J. Mater. Res. Technol. 9 (4) (2020) 7027-7033 [16] H.Y. Zhao, N. Hu, R. Xu, H.X. Liu, J.T. Liu, Q.W. Ran, Spray-drying synthesis of LiMnO2@VXC-72R composite microspheres with excellent electrochemical performance, Ceram. Int. 46 (13) (2020) 21805-21809 [17] M.L. Zhang, H.Y. Zhao, M. Tan, J.T. Liu, Y.Z. Hu, S.S. Liu, X.H. Shu, H. Li, Q.W. Ran, J.J. Cai, X.Q. Liu, Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage, J. Alloy. Compd. 774 (2019) 82-92 [18] B. Swain, Recovery and recycling of lithium:A review, Sep. Purif. Technol. 172 (2017) 388-403 [19] C.W. Liu, J. Lin, H.B. Cao, Y. Zhang, Z. Sun, Recycling of spent lithium-ion batteries in view of lithium recovery:A critical review, J. Clean. Prod. 228 (2019) 801-813 [20] J.F. Song, L.D. Nghiem, X.M. Li, T. He, Lithium extraction from Chinese salt-lake brines:Opportunities, challenges, and future outlook, Environ. Sci.:Water Res. Technol. 3 (4) (2017) 593-597 [21] S.E. Kesler, P.W. Gruber, P.A. Medina, G.A. Keoleian, M.P. Everson, T.J. Wallington, Global lithium resources:Relative importance of pegmatite, brine and other deposits, Ore Geol. Rev. 48 (2012) 55-69 [22] P. Xu, J. Hong, X.M. Qian, Z.W. Xu, H. Xia, X.C. Tao, Z.Z. Xu, Q.Q. Ni, Materials for lithium recovery from salt lake brine, J. Mater. Sci. 56 (1) (2021) 16-63 [23] X. Xu, Y.M. Chen, P.Y. Wan, K. Gasem, K.Y. Wang, T. He, H. Adidharma, M.H. Fan, Extraction of lithium with functionalized lithium ion-sieves, Prog. Mater. Sci. 84 (2016) 276-313 [24] L.C. Zhang, L.J. Li, D. Shi, X.W. Peng, F.G. Song, F. Nie, W.S. Han, Recovery of lithium from alkaline brine by solvent extraction with β-diketone, Hydrometallurgy 175 (2018) 35-42 [25] Z.Y. Zhou, W. Qin, Y.F. Chu, W.Y. Fei, Elucidation of the structures of tributyl phosphate/Li complexes in the presence of FeCl3 via UV-visible, Raman and IR spectroscopy and the method of continuous variation, Chem. Eng. Sci. 101 (2013) 577-585 [26] Q.H. Zhang, S.Y. Sun, S.P. Li, H. Jiang, J.G. Yu, Adsorption of lithium ions on novel nanocrystal MnO2, Chem. Eng. Sci. 62 (18-20) (2007) 4869-4874 [27] K. Onishi, T. Nakamura, S. Nishihama, K. Yoshizuka, Synergistic solvent impregnated resin for adsorptive separation of lithium ion, Ind. Eng. Chem. Res. 49 (14) (2010) 6554-6558 [28] Y. Sun, X.Y. Guo, S.F. Hu, X. Xiang, Highly efficient extraction of lithium from salt lake brine by LiAl-layered double hydroxides as lithium-ion-selective capturing material, J. Energy Chem. 34 (2019) 80-87 [29] S. Roobavannan, S. Vigneswaran, G. Naidu, Enhancing the performance of membrane distillation and ion-exchange manganese oxide for recovery of water and lithium from seawater, Chem. Eng. J. 396 (2020) 125386 [30] K.S. Chung, J.C. Lee, W.K. Kim, S.B. Kim, K.Y. Cho, Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater, J. Membr. Sci. 325 (2) (2008) 503-508 [31] G. Yang, H. Shi, W.Q. Liu, W.H. Xing, N.P. Xu, Investigation of Mg2+/Li+ separation by nanofiltration, Chin. J. Chem. Eng. 19 (4) (2011) 586-591 [32] X.H. Li, C.J. Zhang, S.N. Zhang, J.X. Li, B.Q. He, Z.Y. Cui, Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation, Desalination 369 (2015) 26-36 [33] H.Z. Zhang, Z.L. Xu, H. Ding, Y.J. Tang, Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+, Desalination 420 (2017) 158-166 [34] A. Somrani, A.H. Hamzaoui, M. Pontie, Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO), Desalination 317 (2013) 184-192 [35] R. Chitrakar, Y. Makita, K. Ooi, A. Sonoda, Lithium recovery from salt lake brine by H2TiO3, DaltonTrans. 43 (23) (2014) 8933-8939 [36] N. Li, D.L. Lu, J.L. Zhang, L.Z. Wang, Yolk-shell structured composite for fast and selective lithium ion sieving, J. Colloid.Interface Sci 520 (2018) 33-40 [37] L. Li, F. Liu, F. Wu, R.J. Chen, Progress of research on the manganese oxide ion-sieve for extracting lithium, J. Inorg. Mater.27(10)(2012)1109-1116. (in Chinese) [38] L. Li, W.J. Qu, F. Liu, T.L. Zhao, X.X. Zhang, R.J. Chen, F. Wu, Surface modification of spinel λ-MnO2 and its lithium adsorption properties from spent lithium ion batteries, Appl. Surf. Sci. 315 (2014) 59-65 [39] A.L. Gao, Z.H. Sun, S.P. Li, X.J. Hou, H.Q. Li, Q.S. Wu, X.G. Xi, The mechanism of manganese dissolution on Li1.6Mn1.6O4 ion sieves with HCl, DaltonTrans. 47 (11) (2018) 3864-3871 [40] X.W. Li, Y.H. Chao, L.L. Chen, W. Chen, J. Luo, C. Wang, P.W. Wu, H.M. Li, W.S. Zhu, Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources, Chem. Eng. J. 392 (2020) 123731 [41] H. Xu, C.G. Chen, Y.H. Song, Synthesis and properties of lithium ion-sieve precursor Li4Mn5O12, J. Inorg. Mater.28(7)(2013)720-726. (In Chinese) [42] S.L. Wang, M. Zhang, Y. Zhang, Y. Zhang, S. Qiao, S.L. Zheng, Application of citric acid as eluting medium for titanium type lithium ion sieve, Hydrometallurgy 183 (2019) 166-174 [43] S.D. Wei, Y.F. Wei, T. Chen, C.B. Liu, Y.H. Tang, Porous lithium ion sieves nanofibers:General synthesis strategy and highly selective recovery of lithium from brine water, Chem. Eng. J. 379 (2020) 122407 [44] S.L. Wang, P. Li, X. Zhang, S.L. Zheng, Y. Zhang, Selective adsorption of lithium from high Mg-containing brines using HxTiO3 ion sieve, Hydrometallurgy 174 (2017) 21-28 [45] L.Y. Zhang, D.L. Zhou, Q.Q. Yao, J.B. Zhou, Preparation of H2TiO3-lithium adsorbent by the sol-gel process and its adsorption performance, Appl. Surf. Sci. 368 (2016) 82-87 [46] L. Cheng, H.J. Liu, J.J. Zhang, H.M. Xiong, Y.Y. Xia, Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors, J. Electrochem. Soc. 153 (8) (2006) A1472 [47] C. Arpagaus, A. Collenberg, D. Rütti, E. Assadpour, S.M. Jafari, Nano spray drying for encapsulation of pharmaceuticals, Int. J.Pharm. 546 (1-2) (2018) 194-214 [48] A. Paudel, Z.A. Worku, J. Meeus, S. Guns, G. van den Mooter, Manufacturing of solid dispersions of poorly water soluble drugs by spray drying:Formulation and process considerations, Int. J.Pharm. 453 (1) (2013) 253-284 [49] A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures, Nat. Chem. 5 (3) (2013) 203-211 [50] A. Singh, G. van den Mooter, Spray drying formulation of amorphous solid dispersions, Adv. Drug.Deliv. Rev. 100 (2016) 27-50 [51] G. Bertrand, P. Roy, C. Filiatre, C. Coddet, Spray-dried ceramic powders:A quantitative correlation between slurry characteristics and shapes of the granules, Chem. Eng. Sci. 60 (1) (2005) 95-102 [52] S.J. Lukasiewicz, Spray-drying ceramic powders, J. Am. Ceram. Soc. 72 (4) (1989) 617-624 [53] C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Aerosol route to functional nanostructured inorganic and hybrid porous materials, Adv. Mater. 23 (5)(2011) 599-623 [54] P. Yue, Z.X. Wang, W.J. Peng, L.J. Li, W. Chen, H.J. Guo, X.H. Li, Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries, Powder Technol. 214 (3) (2011) 279-282 [55] D.S. King, W.G. Fahrenholtz, G.E. Hilmas, Microstructural effects on the mechanical properties of SiC-15 vol% TiB2 particulate-reinforced ceramic composites, J. Am. Ceram. Soc. 96 (2) (2013) 577-583 [56] D.L. Gu, W.J. Sun, G.F. Han, Q. Cui, H.Y. Wang, Lithium ion sieve synthesized via an improved solid state method and adsorption performance for West Taijinar Salt Lake brine, Chem. Eng. J. 350 (2018) 474-483 [57] T. Ryu, A. Rengaraj, Y. Haldorai, J. Shin, S.R. Choe, G.W. Lee, S.K. Hwang, Y.K. Han, B.G. Kim, Y.S. Huh, K.S. Chung, Mechanochemical synthesis of silica-lithium manganese oxide composite for the efficient recovery of lithium ions from seawater, Solid State Ionics 308 (2017) 77-83 [58] L.A. Limjuco, G.M. Nisola, C.P. Lawagon, S.P. Lee, J.G. Seo, H. Kim, W.J. Chung, H2TiO3 composite adsorbent foam for efficient and continuous recovery of Li+ from liquid resources, ColloidsSurfaces A:Physicochem. Eng. Aspects 504 (2016) 267-279 [59] X. Xu, Y. Zhou, M.H. Fan, Z. Lv, Y. Tang, Y.Z. Sun, Y.M. Chen, P.Y. Wan, Lithium adsorption performance of a three-dimensional porous H2TiO3-type lithium ion-sieve in strong alkaline Bayer liquor, RSC Adv. 7 (31) (2017) 18883-18891 [60] M.J. Park, G.M. Nisola, A.B. Beltran, R.E.C. Torrejos, J.G. Seo, S.P. Lee, H. Kim, W.J. Chung, Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate, Chem. Eng. J. 254 (2014) 73-81 [61] G. He, L.Y. Zhang, D.L. Zhou, Y.W. Zou, F.H. Wang, The optimal condition for H2TiO3-lithium adsorbent preparation and Li+ adsorption confirmed by an orthogonal test design, Ionics 21 (8) (2015) 2219-2226 [62] F. Hayashi, K. Ogawa, Y. Moriya, T. Sudare, K. Teshima, Growth of β-Li2TiO3 nanocrystals from LiCl and LiOH fluxes, Cryst. Growth Des. 19 (2) (2019) 1377-1383 [63] Z.Y. Ji, F.J. Yang, Y.Y. Zhao, J. Liu, N. Wang, J.S. Yuan, Preparation of titanium-base lithium ionic sieve with sodium persulfate as eluent and its performance, Chem. Eng. J. 328 (2017) 768-775 [64] X.C. Shi, Z.B. Zhang, D.F. Zhou, L.F. Zhang, B.Z. Chen, L.L. Yu, Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties, Trans. NonferrousMet. Soc. China 23 (1) (2013) 253-259 [65] C.P. Lawagon, G.M. Nisola, J. Mun, A. Tron, R.E.C. Torrejos, J.G. Seo, H. Kim, W.J. Chung, Adsorptive Li+ mining from liquid resources by H2TiO3:Equilibrium, kinetics, thermodynamics, and mechanisms, J. Ind. Eng. Chem. 35 (2016) 347-356 [66] F. Tielens, M. Calatayud, A. Beltrán, C. Minot, J. Andrés, Lithium insertion and mobility in the TiO2-anatase/titanate structure:A periodic DFT study, J. Electroanal. Chem. 581 (2) (2005) 216-223 [67] S.L. Wang, P. Li, W.W. Cui, H.L. Zhang, H.Y. Wang, S.L. Zheng, Y. Zhang, Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application:Excellent lithium adsorption, RSC Adv. 6 (104) (2016) 102608-102616 [68] R. Ramaraghavulu, S. Buddhudu, G. Bhaskar Kumar, Analysis of structural and thermal properties of Li2TiO3 ceramic powders, Ceram. Int. 37 (4) (2011) 1245-1249 [69] G.B. Kumar, S. Buddhudu, Synthesis and emission analysis of Re3+(Eu3+ or Dy3+):Li2TiO3 ceramics, Ceram. Int. 35 (1) (2009) 521-525 [70] M.R. Mohammadi, D.J. Fray, Low temperature nanostructured lithium titanates:Controlling the phase composition, crystal structure and surface area, J. Sol-Gel Sci. Technol. 55 (1) (2010) 19-35 [71] J.L. Xiao, S.Y. Sun, X.F. Song, P. Li, J.G. Yu, Lithium ion recovery from brine using granulated polyacrylamide-MnO2 ion-sieve, Chem. Eng. J. 279 (2015) 659-666 [72] M. Vijayakumar, S. Kerisit, Z.G. Yang, G.L. Graff, J. Liu, J.A. Sears, S.D. Burton, K.M. Rosso, J.Z. Hu, Combined 6, 7Li NMR and molecular dynamics study of Li diffusion in Li2TiO3, J. Phys. Chem. C 113 (46) (2009) 20108-20116 [73] Y. Hosogi, H. Kato, A. Kudo, Visible light response of AgLi1/3M2/3O2(M=Ti and Sn) synthesized from layered Li2MO3using molten AgNO3, J. Mater. Chem. 18 (6) (2008) 647-653 |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions[J]. 中国化学工程学报, 2023, 60(8): 26-36. |
[2] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries[J]. 中国化学工程学报, 2023, 60(8): 80-89. |
[3] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions[J]. 中国化学工程学报, 2023, 60(8): 108-117. |
[4] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study[J]. 中国化学工程学报, 2023, 60(8): 212-227. |
[5] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation[J]. 中国化学工程学报, 2023, 60(8): 262-274. |
[6] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants[J]. 中国化学工程学报, 2023, 60(8): 275-292. |
[7] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework[J]. 中国化学工程学报, 2023, 59(7): 9-15. |
[8] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine[J]. 中国化学工程学报, 2023, 59(7): 16-31. |
[9] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis[J]. 中国化学工程学报, 2023, 59(7): 42-50. |
[10] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application[J]. 中国化学工程学报, 2023, 59(7): 262-269. |
[11] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater[J]. 中国化学工程学报, 2023, 58(6): 124-136. |
[12] | Ruicheng Shen, Shaojun Niu, Guobin Zhu, Kai Wu, Honghe Zheng. Mechanical behavior analysis of high power commercial lithium-ion batteries[J]. 中国化学工程学报, 2023, 58(6): 315-322. |
[13] | Kai Xue, Yanchun Xue, Jing Wang, Shuya Zhang, Xingmei Guo, Xiangjun Zheng, Fu Cao, Qinghong Kong, Junhao Zhang, Zhong Jin. KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries[J]. 中国化学工程学报, 2023, 57(5): 214-223. |
[14] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution[J]. 中国化学工程学报, 2023, 57(5): 233-246. |
[15] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas[J]. 中国化学工程学报, 2023, 57(5): 265-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||