[1] M. Huang, K. Mi, J.H. Zhang, H.L. Liu, T.T. Yu, A.H. Yuan, Q.H. Kong, S.L. Xiong, MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage, J. Mater. Chem. A 5 (1) (2017) 266–274. [2] Y.Z. Liang, N. Song, Z. Zhang, W.H. Chen, J.K. Feng, B.J. Xi, S.L. Xiong, Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage, Adv. Mater. 34 (28) (2022) 2202673. [3] J.H. Zhang, M. Huang, B.J. Xi, K. Mi, A.H. Yuan, S.L. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries, Adv. Energy Mater. 8 (2) (2018) 1701330. [4] Y.X. Yun, B.J. Xi, F. Tian, W.H. Chen, W.P. Sun, H.G. Pan, J.K. Feng, Y.T. Qian, S.L. Xiong, Zero-strain structure for efficient potassium storage: Nitrogen-enriched carbon dual-confinement CoP composite, Adv. Energy Mater. 12 (3) (2022) 2103341. [5] N.X. Shi, B.J. Xi, M. Huang, X.J. Ma, H.B. Li, J.K. Feng, S.L. Xiong, Hierarchical octahedra constructed by Cu2S/MoS2⊂Carbon framework with enhanced sodium storage, Small 16 (23) (2020) 2000952. [6] J. Chen, X. Guo, M. Gao, J. Wang, S. Sun, K. Xue, S. Zhang, Y. Liu, J. Zhang, Free-supportingdual-confined porous Si@c-ZIF@carbon nanofibersfor high-performance lithium-ion batteries,Chem. Commun. 57(81) (2021) 10580-10583. [7] C. Wang, X. Liu, N. Keser Demir, J.P. Chen, K. Li, Applications of water stable metal-organic frameworks, Chem. Soc. Rev. 45 (18) (2016) 5107–5134. [8] Y.J. Fang, D.Y. Luan, Y. Chen, S.Y. Gao, X.W. Lou, Rationally designed three-layered Cu2S@Carbon@MoS2 hierarchical nanoboxes for efficient sodium storage, Angewandte Chemie Int. Ed. 59 (18) (2020) 7178–7183. [9] M. Huang, B.J. Xi, N.X. Shi, J.K. Feng, Y.T. Qian, D.F. Xue, S.L. Xiong, Quantum-matter Bi/TiO 2 heterostructure embedded in N-doped porous carbon nanosheets for enhanced sodium storage, Small Struct. 2 (4) (2021) 2000085. [10] M.Y. Gao, Z.H. Tang, M.R. Wu, J.L. Chen, Y.C. Xue, X.M. Guo, Y.J. Liu, Q.H. Kong, J.H. Zhang, Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries, J. Alloys Compd. 857 (2021) 157554. [11] X.C. Cai, J. Lin, M.L. Pang, Facile synthesis of highly uniform Fe-MIL-88B particles, Cryst. Growth Des. 16 (7) (2016) 3565–3568. [12] Y.X. Wang, M.T. Zhao, J.F. Ping, B. Chen, X.H. Cao, Y. Huang, C.L. Tan, Q.L. Ma, S.X. Wu, Y.F. Yu, Q.P. Lu, J.Z. Chen, W. Zhao, Y.B. Ying, H. Zhang, Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes, Adv. Mater. 28 (21) (2016) 4149–4155. [13] F.F. Cao, M.T. Zhao, Y.F. Yu, B. Chen, Y. Huang, J. Yang, X.H. Cao, Q.P. Lu, X. Zhang, Z.C. Zhang, C.L. Tan, H. Zhang, Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal–organic framework nanosheets as precursors for supercapacitor application, J. Am. Chem. Soc. 138 (22) (2016) 6924–6927. [14] H. Hu, B.Y. Guan, X.W. Lou, Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors, Chem 1 (1) (2016) 102–113. [15] J. Huang, G.Z. Fang, K. Liu, J. Zhou, X.K. Tang, K.N. Cai, S.Q. Liang, Controllable synthesis of highly uniform cuboid-shape MOFs and their derivatives for lithium-ion battery and photocatalysis applications, Chem. Eng. J. 322 (2017) 281–292. [16] F. Sun, H. Wang, Z.B. Qu, K.F. Wang, L.J. Wang, J.H. Gao, J.M. Gao, S.Q. Liu, Y.F. Lu, Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: Synergistic enhancement of adsorption and intercalation mechanisms, Adv. Energy Mater. 11 (1) (2021) 2002981. [17] T. Wang, Y. He, Y.J. Liu, F.J. Guo, X.F. Li, H.B. Chen, H.M. Li, Z.Q. Lin, A ZIF-triggered rapid polymerization of dopamine renders Co/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution, Nano Energy 79 (2021) 105487. [18] J.O. Kim, K.I. Min, H. Noh, D.H. Kim, S.Y. Park, D.P. Kim, Direct fabrication of free-standing MOF superstructures with desired shapes by micro-confined interfacial synthesis, Angew. Chem. Int. Ed. 55 (25) (2016) 7116–7120. [19] H.M. Liu, M.M. Jin, da Zhan, J.M. Wang, X.Y. Cai, Y.T. Qiu, L.F. Lai, Stacking faults triggered strain engineering of ZIF-67 derived Ni-Co bimetal phosphide for enhanced overall water splitting, Appl. Catal. B Environ. 272 (2020) 118951. [20] C.N. Gu, J.J. Li, J.P. Liu, H. Wang, Y. Peng, C.S. Liu, Conferring supramolecular guanosine gel nanofiber with ZIF-67 for high-performance oxygen reduction catalysis in rechargeable zinc-air batteries, Appl. Catal. B Environ. 286 (2021) 119888. [21] J.H. Park, Y.S. Choi, Y.W. Byeon, J.P. Ahn, J.C. Lee, Diffusion kinetics governing the diffusivity and diffusion anisotropy of alloying anodes in Na-ion batteries, Nano Energy 65 (2019) 104041. [22] J. Du, J. Ren, M. Shu, X. Xu, Z. Niu, W. Shi, R. Si, P. Cheng, Insights into the capacity and rate performance of transition-metal coordination compounds for reversible lithium storage, Angew. Chem. Int. Ed. 60(8) (2021) 4142-4149. [23] H.H. Li, Y. Ma, H. Zhang, T. Diemant, R.J. Behm, A. Varzi, S. Passerini, Metal-organic framework derived Fe7S8 nanoparticles embedded in heteroatom-doped carbon with lithium and sodium storage capability, Small Methods 4 (12) (2020) 2000637. [24] X.H. Wan, X.M. Guo, M.T. Duan, J. Shi, S.J. Liu, J.H. Zhang, Y.J. Liu, X.J. Zheng, Q.H. Kong, Ultrafine CoO nanoparticles and Co-N-C lamellae supported on mesoporous carbon for efficient electrocatalysis of oxygen reduction in zinc-air batteries, Electrochimica Acta 394 (2021) 139135. [25] K.K. Guo, B.J. Xi, R.C. Wei, H.B. Li, J.K. Feng, S.L. Xiong, Hierarchical microcables constructed by CoP@C⊂Carbon framework intertwined with carbon nanotubes for efficient lithium storage, Adv. Energy Mater. 10 (12) (2020) 1902913. [26] R. Guo, C. Lv, W. Xu, J. Sun, Y. Zhu, X. Yang, J. Li, J. Sun, L. Zhang, D. Yang, Effect of intrinsic defects of carbon materials on the sodium storage performance, Adv. Energy Mater. 10(9) (2020) 1903652. [27] Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall effect, Science 304 (5671) (2004) 711–714. [28] H. Hu, J. Zhang, B. Guan, X.W. Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage, Angew. Chem. Int. Ed Engl. 55 (33) (2016) 9514–9518. [29] J. Shi, X.M. Guo, S.J. Liu, Y. Sun, J.H. Zhang, Y.J. Liu, X.J. Zheng, Q.H. Kong, An altered nanoemulsion assembly strategy for in situ synthesis of CO2P/NP-C nanospheres as advanced oxygen reduction electrocatalyst for zinc-air batteries, Compos. B Eng. 231 (2022) 109589. [30] J. Kim, J. Lee, J. Yun, S.H. Choi, S.G. Han, J. Moon, J.H. Kim, J.W. Lee, M.S. Park, Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode, Adv. Funct. Mater. 30 (15) (2020) 1910538. [31] X.M. Guo, S.J. Liu, X.H. Wan, J.H. Zhang, Y.J. Liu, X.J. Zheng, Q.H. Kong, Z. Jin, Controllable solid-phase fabrication of an Fe2O3/Fe5C2/Fe–N–C electrocatalyst toward optimizing the oxygen reduction reaction in zinc–air batteries, Nano Lett. 22 (12) (2022) 4879–4887. [32] J.J. Yuan, W. Liu, X.K. Zhang, Y.H. Zhang, W.T. Yang, W.D. Lai, X.K. Li, J.J. Zhang, X.F. Li, MOF derived ZnSe-FeSe2/RGO Nanocomposites with enhanced sodium/potassium storage, J. Power Sources 455 (2020) 227937. [33] J. Zhu, C.Q. Shang, X. Wang, G.F. Zhou, Enhanced sodium storage performance of Co7Se8 enabled through In Situ formation of a nanoporous architecture, ChemElectroChem 7 (21) (2020) 4361–4368. [34] S. Men, J. Lin, Y. Zhou, X.W. Kang, N-doped porous carbon wrapped FeSe2 nanoframework prepared by spray drying: A potential large-scale production technique for high-performance anode materials of sodium ion batteries, J. Power Sources 485 (2021) 229310. [35] W.W. Sun, X.C. Tao, P.P. Du, Y. Wang, Carbon-coated mixed-metal sulfide hierarchical structure: MOF-derived synthesis and lithium-storage performances, Chem. Eng. J. 366 (2019) 622–630. [36] M. Huang, B. Xi, L. Mi, Z. Zhang, W. Chen, J. Feng, S. Xiong, Rationally designed three-layered TiO2@amorphous MoS3@carbon hierarchical microspheres for efficient potassium storage, Small 18(13) (2022) 210781. [37] M.Y. Gao, Y.C. Xue, Y.T. Zhang, C.X. Zhu, H.W. Yu, X.M. Guo, S.S. Sun, S.L. Xiong, Q.H. Kong, J.H. Zhang, Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries, Inorg. Chem. Front. 9 (15) (2022) 3933–3942. [38] Y.C. Xue, X.M. Guo, M.R. Wu, J.L. Chen, M.T. Duan, J. Shi, J.H. Zhang, F. Cao, Y.J. Liu, Q.H. Kong, Zephyranthes-like CO2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries, Nano Res. 14 (10) (2021) 3598–3607. [39] Z. Yang, X.H. Liu, X.X. He, W.H. Lai, L. Li, Y. Qiao, S.L. Chou, M.H. Wu, Rechargeable sodium-based hybrid metal-ion batteries toward advanced energy storage, Adv. Funct. Mater. 31 (8) (2021) 2006457. [40] M.R. Wu, M.Y. Gao, S.Y. Zhang, R. Yang, Y.M. Chen, S.Q. Sun, J.F. Xie, X.M. Guo, F. Cao, J.H. Zhang, High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater. 28 (10) (2021) 1656–1665. [41] M.T. Duan, M.R. Wu, K. Xue, Z.X. Bian, J. Shi, X.M. Guo, F. Cao, J.H. Zhang, Q.H. Kong, F. Zhang, Preparation of CoO/SnO2@NC/S composite as high-stability cathode material for lithium-sulfur batteries, Int. J. Miner. Metall. Mater. 28 (10) (2021) 1647–1655. |