[1] X. Liu, L. Dai, Carbon-based metal-free catalysts, Nat. Rev. Mater. 1 (2016)16064. [2] D.S. Su, G.D. Wen, S.C. Wu, F. Peng, R. Schlögl, Carbocatalysis in liquid-phase reactions, Angew. Chem. Int. Ed. 56 (4) (2017) 936–964. https://doi.org/10.1002/anie.201600906 [3] Z.H. Zhao, M.T. Li, L.P. Zhang, L.M. Dai, Z.H. Xia, Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries, Adv. Mater. 27 (43) (2015) 6834–6840. https://pubmed.ncbi.nlm.nih.gov/26418520/ [4] Z.H. Wang, X. Feng, Y. Bai, H.Y. Yang, R.Q. Dong, X.R. Wang, H.J. Xu, Q.Y. Wang, H. Li, H.C. Gao, C. Wu, Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries, Adv. Energy Mater. 11 (11) (2021) 2003854. https://doi.org/10.1002/aenm.202003854 [5] B.H. Hou, Y.Y. Wang, Q.L. Ning, W.H. Li, X.T. Xi, X. Yang, H.J. Liang, X. Feng, X.L. Wu, Sodium-ion batteries: self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: superb room/low-temperature sodium storage and working mechanism (adv. mater. 40/2019), Adv. Mater. 31 (40) (2019) 1970288. https://doi.org/10.1002/adma.201970288 [6] H.J. Liang, Z.Y. Gu, X.Y. Zheng, W.H. Li, L.Y. Zhu, Z.H. Sun, Y.F. Meng, H.Y. Yu, X.K. Hou, X.L. Wu, Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries, J. Energy Chem. 59 (2021) 589–598. http://dx.doi.org/10.1016/j.jechem.2020.11.039 [7] G. Wang, X.H. Xiong, D. Xie, Z.H. Lin, J. Zheng, F.H. Zheng, Y.P. Li, Y.Z. Liu, C.H. Yang, M.L. Liu, Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries, J. Mater. Chem. A 6 (47) (2018) 24317–24323. https://doi.org/10.1039/c8ta09751h [8] C.L. Ma, Z.H. Hu, N.J. Song, Y. Zhao, Y.Z. Liu, H.Q. Wang, Constructing mild expanded graphite microspheres by pressurized oxidation combined microwave treatment for enhanced lithium storage, Rare Met. 40 (4) (2021) 837–847. http://dx.doi.org/10.1007/s12598-020-01625-9 [9] M.N. Fan, Z.H. Lin, P. Zhang, X.D. Ma, K.P. Wu, M.L. Liu, X.H. Xiong, Synergistic effect of nitrogen and sulfur dual-doping endows TiO 2 with exceptional sodium storage performance, Adv. Energy Mater. 11 (6) (2021) 2003037. https://doi.org/10.1002/aenm.202003037 [10] K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, Science 323 (5915) (2009) 760–764. https://pubmed.ncbi.nlm.nih.gov/19197058/ [11] M. Borghei, N. Laocharoen, E. Kibena-Põldsepp, L.S. Johansson, J. Campbell, E. Kauppinen, K. Tammeveski, O.J. Rojas, Porous N, P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: alternative to Pt-C for alkaline fuel cells, Appl. Catal. B Environ. 204 (2017) 394–402. http://dx.doi.org/10.1016/j.apcatb.2016.11.029 [12] X.S. Dong, X.W. Liu, H. Chen, X.Y. Xu, H.C. Jiang, C.L. Gu, Q. Li, S.L. Qiao, X.J. Zhang, Y.Q. Hu, Hard template-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction, J. Mater. Sci. 56 (3) (2021) 2385–2398. http://dx.doi.org/10.1007/s10853-020-05303-0 [13] J. Gao, N. Ma, J.J. Tian, C. Shen, L.L. Wang, P.F. Yu, Y.Y. Chu, W. Liu, X.Y. Tan, X.F. Li, Z. Yin, High performance of N, P co-doped metal-free carbon catalyst derived from ionic liquid for oxygen reduction reaction, J. Solid State Electrochem. 22 (2) (2018) 519–525. http://dx.doi.org/10.1007/s10008-017-3785-y [14] R. Li, Z.D. Wei, X.L. Gou, Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution, ACS Catal. 5 (7) (2015) 4133–4142. https://doi.org/10.1021/acscatal.5b00601 [15] T.H. Li, D.M. Tang, M. Wang, Q.L. Song, C.M. Li, Ionic liquid originated synthesis of N, P-doped graphene for hydrogen evolution reaction, ChemistrySelect 3 (24) (2018) 6814–6820. https://doi.org/10.1002/slct.201801439 [16] Y.N. Sun, M.L. Zhang, L. Zhao, Z.Y. Sui, Z.Y. Sun, B.H. Han, A N, P dual-doped carbon with high porosity as an advanced metal-free oxygen reduction catalyst, Adv. Mater. Interfaces 6 (14) (2019) 1900592. https://doi.org/10.1002/admi.201900592 [17] Z. Zhou, A. Chen, X. Fan, A. Kong, Y. Shan, Hierarchical porous N-P-coupled carbons as metal-free bifunctional electro-catalysts for oxygen conversion, Appl. Surf. Sci. 464 (2019) 380–387. http://dx.doi.org/10.1016/j.apsusc.2018.09.095 [18] S. Kar, K. Bramhaiah, N.S. John, S. Bhattacharyya, Insight into the multistate emissive N, P-doped carbon nano-Onions: emerging visible-light absorption for photocatalysis, Chem. Asian J. 16 (9) (2021) 1138–1149. https://pubmed.ncbi.nlm.nih.gov/33734603/ [19] Q.M. Sun, Y.M. Li, T. He, The excellent capacitive capability for N, P-doped carbon microsphere/reduced graphene oxide nanocomposites in H2SO4/KI redox electrolyte, J. Mater. Sci. 54 (10) (2019) 7665–7678. http://dx.doi.org/10.1007/s10853-019-03414-x [20] W. Zhong, Q.W. Chen, F. Yang, W.L. Liu, G.D. Li, K.F. Xie, M.M. Ren, N, P dual-doped carbon nanotube with superior high-rate sodium storage performance for sodium ion batteries, J. Electroanal. Chem. 850 (2019) 113392. http://dx.doi.org/10.1016/j.jelechem.2019.113392 [21] G.H. Dong, K. Lang, H. Ouyang, W.Z. Zhang, L.M. Bai, S.J. Chen, Z.F. Zhang, Y.Y. Gao, Z.H. Mu, X.D. Zhao, Facile synthesis of N, P-doped carbon dots from maize starch via a solvothermal approach for the highly sensitive detection of Fe3+, RSC Adv. 10 (55) (2020) 33483–33489. https://doi.org/10.1039/d0ra06209j [22] J.J. Li, Y.Z. Jiao, L.D. Feng, Y. Zhong, G.C. Zuo, A.M. Xie, W. Dong, Highly N, P-doped carbon dots: rational design, photoluminescence and cellular imaging, Microchimica Acta 184 (8) (2017) 2933–2940. http://dx.doi.org/10.1007/s00604-017-2314-0 [23] Y.J. Gao, G. Hu, J. Zhong, Z.J. Shi, Y.S. Zhu, D.S. Su, J.G. Wang, X.H. Bao, D. Ma, Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation, Angew. Chem. Int. Ed. 52 (7) (2013) 2109–2113. https://doi.org/10.1002/anie.201207918 [24] D.H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351 (6271) (2016) 361–365. https://pubmed.ncbi.nlm.nih.gov/26798009/ [25] L. He, F. Weniger, H. Neumann, M. Beller, Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry, Angewandte Chemie Int. Ed. 55 (41) (2016) 12582–12594. http://dx.doi.org/10.1002/anie.201603198 [26] J. Yang, M. Xu, J.Y. Wang, S.B. Jin, B.E. Tan, A facile approach to prepare multiple heteroatom-doped carbon materials from imine-linked porous organic polymers, Sci. Rep. 8 (1) (2018) 4200. https://pubmed.ncbi.nlm.nih.gov/29523847/ [27] Y.L. Xia, Z.Z. Zhang, F.X. Qin, J. Gao, H. Wang, Z.W. Xu, X.Y. Tan, X. Liu, X.F. Li, Z. Yin, Electrocatalytic activity enhancement of N, P-doped carbon nanosheets derived from polymerizable ionic liquids, J. Appl. Electrochem. 51 (4) (2021) 669–679. http://dx.doi.org/10.1007/s10800-020-01506-0 [28] J.W.F. To, Z. Chen, H.B. Yao, J.J. He, K. Kim, H.H. Chou, L.J. Pan, J. Wilcox, Y. Cui, Z.N. Bao, Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework, ACS Cent. Sci. 1 (2) (2015) 68–76. https://pubmed.ncbi.nlm.nih.gov/27162953/ [29] J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Nat. Nanotechnology,10 (5) (2015) 444–452. https://www.nature.com/articles/nnano.2015.48\“> [30] X.X. Mao, Z.X. Cao, S.N. Chen, J.Y. Jia, X.N. Li, Y.H. Yin, S.T. Yang, Facile synthesis of N, P-doped hierarchical porous carbon framework catalysts based on gelatin/phytic acid supermolecules for electrocatalytic oxygen reduction, Int. J. Hydrog. Energy 44 (12) (2019) 5890–5898. http://dx.doi.org/10.1016/j.ijhydene.2019.01.044 [31] C.Q. Zhou, J. Han, G.P. Song, R. Guo, Fabrication of poly(aniline-co-pyrrole) hollow nanospheres with triton X-100 micelles as templates, J. Polym. Sci. A Polym. Chem. 46 (11) (2008) 3563–3572. https://doi.org/10.1002/pola.22695 [32] X.L. Mou, J.X. Ma, S.H. Zheng, X.K. Chen, F. Krumeich, R. Hauert, R.H. Lin, Z.S. Wu, Y.J. Ding, A general synthetic strategy toward highly doped pyridinic nitrogen-rich carbons, Adv. Funct. Mater. 31 (3) (2021) 2006076. https://doi.org/10.1002/adfm.202006076 [33] F. Xu, B.C. Ding, Y.Q. Qiu, R.H. Dong, W.Q. Zhuang, X.S. Xu, H.J. Han, J.Y. Yang, B.Q. Wei, H.Q. Wang, S. Kaskel, Generalized domino-driven synthesis of hollow hybrid carbon spheres with ultrafine metal nitrides/oxides, Matter 3 (1) (2020) 246–260. http://dx.doi.org/10.1016/j.matt.2020.05.012 [34] R.H. Lin, S.K. Kaiser, R. Hauert, J. Pérez-Ramírez, Descriptors for high-performance nitrogen-doped carbon catalysts in acetylene hydrochlorination, ACS Catal. 8 (2) (2018) 1114–1121. https://doi.org/10.1021/acscatal.7b03031 [35] S.K. Kaiser, R.H. Lin, F. Krumeich, O.V. Safonova, J. Pérez-Ramírez, Preserved in a shell: high-performance graphene-confined ruthenium nanoparticles in acetylene hydrochlorination, Angew. Chem. Int. Ed. 58 (35) (2019) 12297–12304. https://doi.org/10.1002/anie.201906916 [36] J. Stejskal, R.G. Gilbert, Polyaniline. Preparation of a conducting polymer(IUPAC Technical Report), Pure Appl. Chem. 74 (5) (2002) 857–867. https://doi.org/10.1351/pac200274050857 [37] M. Trchová, J. Stejskal, Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report), Pure Appl. Chem. 83 (10) (2011) 1803–1817. https://doi.org/10.1351/pac-rep-10-02-01 [38] M. Trchová, P. Matějka, J. Brodinová, A. Kalendová, J. Prokeš, J. Stejskal, Structural and conductivity changes during the pyrolysis of polyaniline base, Polym. Degrad. Stab. 91 (1) (2006) 114–121. http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.022 [39] M. Trchová, E.N. Konyushenko, J. Stejskal, J. Kovářová, G. Ćirić-Marjanović, The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes, Polym. Degrad. Stab. 94 (6) (2009) 929–938. http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.001 [40] X.H. Liu, J. Zhang, S.J. Guo, N. Pinna, Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries, J. Mater. Chem. A 4 (4) (2016) 1423–1431. https://doi.org/10.1039/c5ta09066k |