[1] J.P. Chen, R.T. Yang, Role of WO3 in mixed V2O5-WO3/TiO2catalysts for selective catalytic reduction of nitric oxide with ammonia, Appl. Catal. A Gen. 80 (1) (1992) 135–148. [2] G. Madia, M. Elsener, M. Koebel, F. Raimondi, A. Wokaun, Thermal stability of vanadia-tungsta-titania catalysts in the SCR process, Appl. Catal. B Environ. 39 (2) (2002) 181–190. [3] R. Kuma, T. Kitano, T. Tsujiguchi, T. Tanaka, Deactivation mechanism and enhanced durability of V 2 O 5/TiO 2–SiO 2–MoO 3 catalysts for NH 3–SCR in the presence of SO 2, ChemCatChem 12 (23) (2020) 5938–5947. [4] Y.L. Li, W.M. Liu, R. Yan, J. Liang, T. Dong, Y.Y. Mi, P. Wu, Z. Wang, H.G. Peng, T.C. An, Hierarchical three-dimensionally ordered macroporous Fe-V binary metal oxide catalyst for low temperature selective catalytic reduction of NOx from marine diesel engine exhaust, Appl. Catal. B Environ. 268 (2020) 118455. [5] J.H. Wang, H.W. Zhao, G. Haller, Y.D. Li, Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts, Appl. Catal. B Environ. 202 (2017) 346–354. [6] F. Liu, W. Shan, X. Shi, C. Zhang, H. Hong, Research progress in vanadium-free catalysts for the selective catalytic reduction of no with NH3, Chinese J. Catal. 32 (2011) 1113–1128. [7] S.S. Adolf, P. Marcus, S. Paul, D. Yvonne, K. Thomas, L. Egbert, Process and catalyst for reducing nitrogen oxides, US Pat.,US6843971B2(2005). [8] T.W. Lan, Y.F. Zhao, J. Deng, J.P. Zhang, L.Y. Shi, D.S. Zhang, Selective catalytic oxidation of NH3 over noble metal-based catalysts: State of the art and future prospects, Catal. Sci. Technol. 10 (17) (2020) 5792–5810. [9] J.Q. Tian, Y.Q. Li, X. Zhou, Y.B. Yao, D.H. Wang, J.M. Dan, B. Dai, Q. Wang, F. Yu, Overwhelming low ammonia escape and low temperature denitration efficiency via MnOx-decorated two-dimensional MgAl layered double oxides, Chin. J. Chem. Eng. 28 (7) (2020) 1925–1934. [10] W. Zhang, Y.H. Tang, W. Xiao, M. Ruan, Y.S. Yin, Q.B. Song, K. Xie, C. Qin, M.Y. Dong, Y.H. Zhou, J. Li, Correction: Promotional mechanism of enhanced denitration activity with Cu modification in a Ce/TiO2–ZrO2 catalyst for a low temperature NH3-SCR system, RSC Adv. 12 (3) (2022) 1534. [11] Y. L. Li, S. Y Yang, H. G. Peng, W. M. Liu, Y. Y. Mi, Z. Wang, C. J. Tang, D. S. Wu, T. C. An. Insight into the activity and SO2 tolerance of hierarchically ordered MnFe1-dCodOx ternary oxides for low-temperature selective catalytic reduction of NOx with NH3. J. Catal. 395 (2021): 195–209. [12] J.A. Onrubia-Calvo, B. Pereda-Ayo, M. Urrutxua, U. De la Torre, J.R. Gonzalez–Velasco, Boosting NOx Removal by Perovskite-Based Catalyst in NSR-SCR Diesel Aftertreatment Systems, Ind. Eng. Chem. Res. 60 (2021) 6525–6537. [13] S. Xie, Q. Qin, H. Liu, L. Jin, X. Wei, J. Liu, X. Liu, Y. Yao, L. Dong, B. Li, MOF-74–M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for Low-Temperature NH3–SCR and In Situ DRIFTS Study Reaction Mechanism, ACS Appl. Mater. Inter. 12 (2020) 48476–48485. [14] X.W. Ye, R. Oord, M. Monai, J.E. Schmidt, T.H. Chen, F. Meirer, B.M. Weckhuysen, New insights into the NH3-selective catalytic reduction of NO over Cu-ZSM-5 as revealed by operando spectroscopy, Catal. Sci. Technol. 12 (8) (2022) 2589–2603. [15] C.K. Pang, Y.Q. Zhuo, Q.Y. Weng, Mn/SAPO-34 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3, RSC Adv. 7 (51) (2017) 32146–32154. [16] J.L. Chen, G. Peng, W. Zheng, W.B. Zhang, L. Guo, X.Q. Wu, Correction: Excellent performance of one-pot synthesized Fe-containing MCM-22 zeolites for the selective catalytic reduction of NOx with NH3, Catal. Sci. Technol. 10 (21) (2020) 7399. [17] F. Han, M.Q. Yuan, H.J. Chen, Selective catalytic reduction of NOx with methanol on H-ZSM-5: The effect of extra-framework aluminum, Catal. Today 355 (2020) 443–449. [18] P.R. Chen, M. Jabłońska, P. Weide, T. Caumanns, T. Weirich, M. Muhler, R. Moos, R. Palkovits, U. Simon, Formation and effect of NH4+ intermediates in NH3–SCR over Fe-ZSM-5 zeolite catalysts, ACS Catal. 6 (11) (2016) 7696–7700. [19] Y. Ohata, T. Ohnishi, T. Moteki, M. Ogura, High NH3-SCR reaction rate with low dependence on O2 partial pressure over Al-rich Cu-*BEA zeolite, RSC Adv 11 (17) (2021) 10381–10384. [20] Y.Y. Zhao, B. Choi, D. Kim, Effects of Ce and Nb additives on the de-NOx performance of SCR/CDPF system based on Cu-beta zeolite for diesel vehicles, Chem. Eng. Sci. 164 (2017) 258–269. [21] H. Jiang, B. Guan, H. Lin, Z. Huang, Cu/SSZ-13 zeolites prepared by in situ hydrothermal synthesis method as NH3-SCR catalysts: Influence of the Si/Al ratio on the activity and hydrothermal properties, Fuel 255 (2019) 115587. [22] J. Liang, J.X. Tao, Y.Y. Mi, W.M. Liu, Z. Wang, Z.G. Li, D.S. Wu, P. Wu, H.G. Peng, Unraveling the boosting low-temperature performance of ordered mesoporous Cu-SSZ-13 catalyst for NOx reduction, Chem. Eng. J. 409 (2021) 128238. [23] C. Wang, J. Wang, J.Q. Wang, T. Yu, M.Q. Shen, W.L. Wang, W. Li, The effect of sulfate species on the activity of NH3-SCR over Cu/SAPO-34, Appl. Catal. B Environ. 204 (2017) 239–249. [24] Y. Y. Mi, G. Li, Y. L. Zheng, Y. W. Lu, W. M. Liu, Z. G. Li, D. S. Wu, H.G. Peng. Insights into novel mesoporous Cu-SAPO-34 with enhanced deNOx performance for diesel emission control. Microporous. Mesoporous Mater. 323 (2021) 111245-111255. [25] S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts, Catal. Rev. 50 (4) (2008) 492–531. [26] P. Nakhostin Panahi, Selective catalytic reduction of NO with NH3 over the SAPO-34 supported transition metal nanocatalysts, React. Kinetics Mech. Catal. 121 (2) (2017) 773–783. [27] M.H. Zhang, H.B. Cao, Y.F. Chen, H.X. Jiang, Role of Mn: Promotion of fast-SCR for Cu-SAPO-34 in low-temperature selective catalytic reduction with ammonia, Catal. Surv. From Asia 23 (3) (2019) 245–255. [28] D. Wang, Y. Jangjou, Y. Liu, M.K. Sharma, J.Y. Luo, J.H. Li, K. Kamasamudram, W.S. Epling, A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts, Appl. Catal. B Environ. 165 (2015) 438–445. [29] D. Zhang, R.T. Yang, NH3-SCR of NO over one-pot Cu-SAPO-34 catalyst: Performance enhancement by doping Fe and MnCe and insight into N2O formation, Appl. Catal. A Gen. 543 (2017) 247–256. [30] B. Liu, N.G. Lv, C. Wang, H.W. Zhang, Y.Y. Yue, J.D. Xu, X.T. Bi, X.J. Bao, Redistributing Cu species in Cu-SSZ-13 zeolite as NH3-SCR catalyst via a simple ion-exchange, Chin. J. Chem. Eng. 41 (2022) 329–341. [31] J. Liang, Y.Y. Mi, G. Song, H.G. Peng, Y.L. Li, R. Yan, W.M. Liu, Z. Wang, P. Wu, F.D. Liu, Environmental benign synthesis of Nano-SSZ-13 via FAU trans-crystallization: Enhanced NH3-SCR performance on Cu-SSZ-13 with nano-size effect, J. Hazard. Mater. 398 (2020) 122986. [32] C. Peng, R. Yan, Y. Y. Mi, G. Li, Y. L. Zheng, Y. W. Luo, J. Liang, W. M. Liu, Z. G Li, D. S. Wu, X. Wang, H. G. Peng. Toward rational design of a novel hierarchical porous Cu-SSZ-13 catalyst with boosted low-temperature NOx reduction performance. J. Catal. 401 (2021) 309–320. [33] D.Q. Fan, J. Wang, T. Yu, J.Q. Wang, X.Q. Hu, M.Q. Shen, Catalytic deactivation mechanism research over Cu/SAPO-34 catalysts for NH3-SCR (I): The impact of 950 ℃ hydrothermal aging time, Chem. Eng. Sci. 176 (2018) 285–293. [34] R. Villamaina, I. Nova, E. Tronconi, T. Maunula, M. Keenan, The deactivation of an NH3-SCR Cu-SAPO catalyst upon exposure to non-oxidizing conditions, Appl. Catal. A Gen. 580 (2019) 11–16. [35] S. Qiu, Y. Xiao, J. Liu, G. He, Enhanced NH3-SCR performance over Cu-SAPO-34 prepared by one-pot synthesis: Effect of Si contents, Chin. J. Chem. Eng. 72(2021)1–14. [36] X.M. Zhou, Z.Y. Chen, Z.Y. Guo, H.P. Yang, J.G. Shao, X. Zhang, S.H. Zhang, One-pot hydrothermal synthesis of dual metal incorporated CuCe-SAPO-34 zeolite for enhancing ammonia selective catalytic reduction, J. Hazard. Mater. 405 (2021) 124177. [37] T. Doan, P. Dam, K. Nguyen, T.H. Vuong, M.T. Le, T.H. Pham, Copper-iron bimetal ion-exchanged SAPO-34 for NH3-SCR of NOx, Catalysts 10 (3) (2020) 321. [38] K.W. Zha, L. Kang, C. Feng, L.P. Han, H.R. Li, T.T. Yan, P. Maitarad, L.Y. Shi, D.S. Zhang, Improved NOx reduction in the presence of alkali metals by using hollandite Mn–Ti oxide promoted Cu-SAPO-34 catalysts, Environ. Sci.: Nano 5 (6) (2018) 1408–1419. [39] Q.L. Liu, Z.C. Fu, L. Ma, H. Niu, C.X. Liu, J.H. Li, Z.Y. Zhang, MnOx-CeO2 supported on Cu-SSZ-13: A novel SCR catalyst in a wide temperature range, Appl. Catal. A Gen. 547 (2017) 146–154. [40] L. Zhang, T.Y. Du, H.X. Qu, B. Chi, Q. Zhong, Synthesis of Fe-ZSM-5@Ce/mesoporous-silica and its enhanced activity by sequential reaction process for NH3-SCR, Chem. Eng. J. 313 (2017) 702–710. [41] S. Zhao, L.M. Huang, B.Q. Jiang, M. Cheng, J.W. Zhang, Y.J. Hu, Stability of Cu-Mn bimetal catalysts based on different zeolites for NOx removal from diesel engine exhaust, Chin. J. Catal. 39 (4) (2018) 800–809. [42] Y. Cao, L. Lan, X. Feng, Z. Yang, S. Zou, H. Xu, Z. Li, M. Gong, Y. Chen, Cerium promotion on the hydrocarbon resistance of a Cu-SAPO-34 NH3-SCR monolith catalyst, Catal. Sci. Technol. 5 (2015) 4511–4521. [43] C. Yan, H. Cheng, H. Chen, S. Wang, Removal of NOx from diesel engine exhaust by different Cu2+-exchanged zeolites, Chinese Journal of Environmental Engineering 9 (2015) 2967–2973. [44] C.Y. Yin, P.F. Cheng, X. Li, R.T. Yang, Selective catalytic reduction of nitric oxide with ammonia over high-activity Fe/SSZ-13 and Fe/one-pot-synthesized Cu-SSZ-13 catalysts, Catal. Sci. Technol. 6 (20) (2016) 7561–7568. [45] J.X. Liu, F.H. Yu, J. Liu, L.F. Cui, Z. Zhao, Y.C. Wei, Q.Y. Sun, Synthesis and kinetics investigation of meso-microporous Cu-SAPO-34 catalysts for the selective catalytic reduction of NO with ammonia, J. Environ. Sci. (China) 48 (2016) 45–58. [46] J.P. Du, X.Y. Shi, Y.L. Shan, W.S. Zhang, Y.B. Yu, W.P. Shan, H. He, Investigation of suitable templates for one-pot-synthesized Cu-SAPO-34 in NOx abatement from diesel vehicle exhaust, Environ Sci Technol 54 (13) (2020) 7870–7878. [47] T. Yu, D.Q. Fan, T. Hao, J. Wang, M.Q. Shen, W. Li, The effect of various templates on the NH3-SCR activities over Cu/SAPO-34 catalysts, Chem. Eng. J. 243 (2014) 159–168. [48] Y. Cao, L.M. Wei, X.Z. Song, X.X. Yan, X.Y. Liu, L.J. Wang, Synthesis of iron phosphate-SAPO-34 composite and its application as effective absorbent for wastewater treatment, MATEC Web Conf. 238 (2018) 02003. [49] S. Ashtekar, S.V.V. Chilukuri, D.K. Chakrabarty, Small-pore molecular sieves SAPO-34 and SAPO-44 with chabazite structure: A study of silicon incorporation, J. Phys. Chem. 98 (18) (1994) 4878–4883. [50] P.L. Wang, L.J. Yan, Y.D. Gu, S. Kuboon, H.R. Li, T.T. Yan, L.Y. Shi, D.S. Zhang, Poisoning-resistant NOx reduction in the presence of alkaline and heavy metals over H-SAPO-34-supported Ce-promoted Cu-based catalysts, Environ. Sci. Technol. 54 (10) (2020) 6396–6405. [51] M. Muttakin, S. Mitra, K. Thu, K. Ito, B.B. Saha, Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms, Int. J. Heat Mass Transf. 122 (2018) 795–805. [52] B. Guan, H. Jiang, X.S. Peng, Y.F. Wei, Z.Q. Liu, T. Chen, H. Lin, Z. Huang, Promotional effect and mechanism of the modification of Ce on the enhanced NH3-SCR efficiency and the low temperature hydrothermal stability over Cu/SAPO-34 catalysts, Appl. Catal. A Gen. 617 (2021) 118110. [53] M. Cortés-Reyes, E. Finocchio, C. Herrera, M.A. Larrubia, L.J. Alemany, G. Busca, A study of Cu-SAPO-34 catalysts for SCR of NOx by ammonia, Microporous Mesoporous Mater. 241 (2017) 258–265. [54] G.P. Yang, X.S. Du, J.Y. Ran, X.M. Wang, Y.R. Chen, L. Zhang, V. Rac, V. Rakic, J. Crittenden, Irregular influence of alkali metals on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia, J. Hazard. Mater. 387 (2020) 122007. [55] X.S. Liu, X.D. Wu, D. Weng, Z.C. Si, R. Ran, Evolution of copper species on Cu/SAPO-34 SCR catalysts upon hydrothermal aging, Catal. Today 281 (2017) 596–604. [56] S. Smolders, J. Jacobsen, N. Stock, D. de Vos, Selective catalytic reduction of NO by cerium-based metal–organic frameworks, Catal. Sci. Technol. 10 (2) (2020) 337–341. [57] M.H. Xu, J. Wang, T. Yu, J.Q. Wang, M.Q. Shen, New insight into Cu/SAPO-34 preparation procedure: Impact of NH4-SAPO-34 on the structure and Cu distribution in Cu-SAPO-34 NH3-SCR catalysts, Appl. Catal. B Environ. 220 (2018) 161–170. [58] Y. Cao, S. Zou, L. Lan, Z.Z. Yang, H.D. Xu, T. Lin, M.C. Gong, Y.Q. Chen, Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx with ammonia, J. Mol. Catal. A Chem. 398 (2015) 304–311. [59] J. Fan, P. Ning, Y.C. Wang, Z.X. Song, X. Liu, H.M. Wang, J. Wang, L.Y. Wang, Q.L. Zhang, Significant promoting effect of Ce or La on the hydrothermal stability of Cu-SAPO-34 catalyst for NH3-SCR reaction, Chem. Eng. J. 369 (2019) 908–919. |