中国化学工程学报 ›› 2023, Vol. 56 ›› Issue (4): 299-313.DOI: 10.1016/j.cjche.2022.08.008
Wufeng Wu1, Xilu Hong1, Jiang Fan1, Yanying Wei1, Haihui Wang2
收稿日期:
2022-03-12
修回日期:
2022-08-22
出版日期:
2023-04-28
发布日期:
2023-06-13
通讯作者:
Yanying Wei,E-mail:ceyywei@scut.edu.cn;Haihui Wang,E-mail:cehhwang@tsinghua.edu.cn
基金资助:
Wufeng Wu1, Xilu Hong1, Jiang Fan1, Yanying Wei1, Haihui Wang2
Received:
2022-03-12
Revised:
2022-08-22
Online:
2023-04-28
Published:
2023-06-13
Contact:
Yanying Wei,E-mail:ceyywei@scut.edu.cn;Haihui Wang,E-mail:cehhwang@tsinghua.edu.cn
Supported by:
摘要: During the last decade, metal–organic frameworks (MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for separations, specifically continuous defect-free MOF membranes, which are usually grown on porous substrates. The substrate not only serves as the MOF layer support but also has a great influence on the membrane fabrication process and the final separation performance of the resultant membrane. In this review, we mainly introduce the progress focused on the substrates for MOF membranes fabrication. The substrate modifications and seeding methods aimed at synthesizing high-quality MOF membranes are also summarized systematically.
Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation[J]. 中国化学工程学报, 2023, 56(4): 299-313.
Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation[J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313.
[1] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature 532 (7600) (2016) 435–437. [2] Liu Y, Ban Y, Yang W, Microstructural engineering and architectural design of metal–organic framework membranes, Adv. Mater. 29 (31) (2017) 1606949. [3] S.J. Xiao, X.W. Huo, S.X. Fan, K. Zhao, S.W. Yu, X.Y. Tan, Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance, Chin. J. Chem. Eng. 29 (2021) 110–120. [4] Z.X. Kang, L.L. Fan, D.F. Sun, Recent advances and challenges of metal–organic framework membranes for gas separation, J. Mater. Chem. A 5 (21) (2017) 10073–10091. [5] M. Niknam Shahrak, M. Niknam Shahrak, A. Shahsavand, N. Khazeni, X.F. Wu, S.G. Deng, Synthesis, gas adsorption and reliable pore size estimation of zeolitic imidazolate framework-7 using CO2 and water adsorption, Chin. J. Chem. Eng. 25 (5) (2017) 595–601. [6] S.L. Qiu, M. Xue, G.S. Zhu, Metal–organic framework membranes: From synthesis to separation application, Chem. Soc. Rev. 43 (16) (2014) 6116–6140. [7] M.M. Zhai, T. Yoshioka, J.H. Yang, J.Q. Wang, D.L. Zhang, J.M. Lu, Y. Zhang, Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane, Chin. J. Chem. Eng. 33 (2021) 104–111. [8] M.S. Denny, J.C. Moreton, L. Benz, S.M. Cohen, Metal–organic frameworks for membrane-based separations, Nat. Rev. Mater. 1 (2016) 16078. [9] W.D. Li, F.S. Pan, Y.M. Song, M.D. Wang, H.J. Wang, S. Walker, H. Wu, Z.Y. Jiang, Construction of molecule-selective mixed matrix membranes with confined mass transfer structure, Chin. J. Chem. Eng. 25 (11) (2017) 1563–1580. [10] Y.L. Ji, W.J. Qian, Y.W. Yu, Q.F. An, L.F. Liu, Y. Zhou, C.J. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chin. J. Chem. Eng. 25 (11) (2017) 1639–1652. [11] H. Bux, F.Y. Liang, Y.S. Li, J. Cravillon, M. Wiebcke, J. Caro, Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis, J. Am. Chem. Soc. 131 (44) (2009) 16000–16001. [12] H.T. Kwon, H.K. Jeong, In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation, J. Am. Chem. Soc. 135 (29) (2013) 10763–10768. [13] V.M. Aceituno Melgar, H.T. Kwon, J. Kim, Direct spraying approach for synthesis of ZIF-7 membranes by electrospray deposition, J. Membr. Sci. 459 (2014) 190–196. [14] A.S. Huang, W. Dou, J. Caro, Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization, J. Am. Chem. Soc. 132 (44) (2010) 15562–15564. [15] Y.Y. Liu, Z. Ng, E.A. Khan, H.K. Jeong, C.B. Ching, Z.P. Lai, Synthesis of continuous MOF-5 membranes on porous α-alumina substrates, Microporous Mesoporous Mater. 118 (1–3) (2009) 296–301. [16] Y. Yoo, Z.P. Lai, H.K. Jeong, Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth, Microporous Mesoporous Mater. 123 (1–3) (2009) 100–106. [17] X. Liu, N.K. Demir, Z. Wu, K. Li, Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination, J. Am. Chem. Soc. 137 (22) (2015) 6999–7002. [18] X.L. Liu, C.H. Wang, B. Wang, K. Li, Novel organic-dehydration membranes prepared from zirconium metal–organic frameworks, Adv. Funct. Mater. 27 (3) (2017) 1604311. [19] V.V. Guerrero, Y. Yoo, M.C. McCarthy, H.K. Jeong, HKUST-1 membranes on porous supports using secondary growth, J. Mater. Chem. 20 (19) (2010) 3938–3943. [20] W.B. Li, Metal–organic framework membranes: Production, modification, and applications, Prog. Mater. Sci. 100 (2019) 21–63. [21] Z.G. Wang, D. Wang, S.X. Zhang, L. Hu, J. Jin, Interfacial design of mixed matrix membranes for improved gas separation performance, Adv. Mater. 28 (17) (2016) 3399–3405. [22] M. Wang, Z. Wang, S. Zhao, J.X. Wang, S.C. Wang, Recent advances on mixed matrix membranes for CO2 separation, Chin. J. Chem. Eng. 25 (11) (2017) 1581–1597. [23] Z.Y. Yeo, S.P. Chai, P.W. Zhu, A.R. Mohamed, An overview: Synthesis of thin films/membranes of metal organic frameworks and its gas separation performances, RSC Adv. 4 (97) (2014) 54322–54334. [24] J.X. Liu, C. Wöll, Surface-supported metal–organic framework thin films: Fabrication methods, applications, and challenges, Chem. Soc. Rev. 46 (19) (2017) 5730–5770. [25] C. Zhang, B.H. Wu, M.Q. Ma, Z.K. Wang, Z.K. Xu, Ultrathin metal/covalent–organic framework membranes towards ultimate separation, Chem. Soc. Rev. 48 (14) (2019) 3811–3841. [26] X. Li, Y.X. Liu, J. Wang, J. Gascon, J.S. Li, B. van der Bruggen, Metal–organic frameworks based membranes for liquid separation, Chem. Soc. Rev. 46 (23) (2017) 7124–7144. [27] D.J. Babu, G.W. He, L.F. Villalobos, K.V. Agrawal, Crystal engineering of metal–organic framework thin films for gas separations, ACS Sustain. Chem. Eng. 7 (1) (2019) 49–69. [28] H.F. Zhang, D.F. Liu, Y. Yao, B.Q. Zhang, Y.S. Lin, Stability of ZIF-8 membranes and crystalline powders in water at room temperature, J. Membr. Sci. 485 (2015) 103–111. [29] Y.Y. Huang, D.H. Liu, Z.P. Liu, C.L. Zhong, Synthesis of zeolitic imidazolate framework membrane using temperature-switching synthesis strategy for gas separation, Ind. Eng. Chem. Res. 55 (26) (2016) 7164–7170. [30] F. Hillman, J. Brito, H.K. Jeong, Rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework membranes for tunable gas separations, ACS Appl. Mater. Interfaces 10 (6) (2018) 5586–5593. [31] Y. Peng, Y.S. Li, Y.J. Ban, W.S. Yang, Two-dimensional metal–organic framework nanosheets for membrane-based gas separation, Angew. Chem. Int. Ed. 56 (33) (2017) 9757–9761. [32] Z.Z. Xie, T. Li, N.L. Rosi, M.A. Carreon, Alumina-supported cobalt–adeninate MOF membranes for CO2/CH4 separation, J. Mater. Chem. A 2 (5) (2014) 1239–1241. [33] M.N. Shah, M.A. Gonzalez, M.C. McCarthy, H.K. Jeong, An unconventional rapid synthesis of high performance metal–organic framework membranes, Langmuir 29 (25) (2013) 7896–7902. [34] F. Zhang, X.Q. Zou, X. Gao, S.J. Fan, F.X. Sun, H. Ren, G.S. Zhu, Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability, Adv. Funct. Mater. 22 (17) (2012) 3583–3590. [35] Y.C. Pan, B. W, Z.P. Lai, Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability, J. Membr. Sci. 421–422 (2012) 292–298. [36] K. Huang, B. Wang, Y.S. Chi, K. Li, High propylene selective metal–organic framework membranes prepared in confined spaces via convective circulation synthesis, Adv. Mater. Interfaces 5 (18) (2018) 1800287. [37] X.L. Dong, Y.S. Lin, Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation, Chem. Commun. 49 (12) (2013) 1196–1198. [38] X.L. Dong, K. Huang, S.N. Liu, R.F. Ren, W.Q. Jin, Y.S. Lin, Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: Defect formation and elimination, J. Mater. Chem. 22 (36) (2012) 19222–19227. [39] W.J. Wang, X.L. Dong, J.P. Nan, W.Q. Jin, Z.Q. Hu, Y.F. Chen, J.W. Jiang, A homochiral metal–organic framework membrane for enantioselective separation, Chem. Commun. 48 (56) (2012) 7022–7024. [40] K. Huang, S.N. Liu, Q.Q. Li, W.Q. Jin, Preparation of novel metal–carboxylate system MOF membrane for gas separation, Sep. Purif. Technol. 119 (2013) 94–101. [41] Y. Wang, H.H. Chen, X.B. Wang, B. Meng, N.T. Yang, X.Y. Tan, S.M. Liu, Preparation of ZIF-8 membranes on porous ZnO hollow fibers by a facile ZnO-induced method, Ind. Eng. Chem. Res. 59 (35) (2020) 15576–15585. [42] Y.X. Hu, J. Wei, Y. Liang, H.C. Zhang, X.W. Zhang, W. Shen, H.T. Wang, Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes, Angew. Chem. Int. Ed. 55 (6) (2016) 2048–2052. [43] G.W. He, M. Dakhchoune, J. Zhao, S.Q. Huang, K.V. Agrawal, Electrophoretic nuclei assembly for crystallization of high-performance membranes on unmodified supports, Adv. Funct. Mater. 28 (20) (2018) 1707427. [44] S. Zhou, Y.Y. Wei, L.B. Li, Y.F. Duan, Q.Q. Hou, L.L. Zhang, L.X. Ding, J. Xue, H.H. Wang, J. Caro, Paralyzed membrane: Current-driven synthesis of a metal–organic framework with sharpened propene/propane separation, Sci. Adv. 4 (10) (2018) eaau1393. [45] Q.Q. Hou, Y. Wu, S. Zhou, Y.Y. Wei, J. Caro, H.H. Wang, Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation, Angew. Chem. Int. Ed. 58 (1) (2019) 327–331. [46] Q.Q. Hou, S. Zhou, Y.Y. Wei, J. Caro, H.H. Wang, Balancing the grain boundary structure and the framework flexibility through bimetallic metal–organic framework (MOF) membranes for gas separation, J. Am. Chem. Soc. (2020) 9582–9586. [47] H.L. Zhang, X.B. Wang, L.Y. Wei, B. Meng, X.Y. Tan, W.Q. Jin, S.M. Liu, A simple seed-embedded method to prepare ZIF-8 membranes supported on flexible PESf hollow fibers, J. Ind. Eng. Chem. 72 (2019) 222–231. [48] Y.N. Ma, Y.X. Sun, J. Yin, H.S. Sun, H. Wu, H. Wang, Y.F. Zhang, X.S. Feng, J.Q. Meng, A MOF membrane with ultrathin ZIF-8 layer bonded on ZIF-8 in situ embedded PSf substrate, J. Taiwan Inst. Chem. Eng. 104 (2019) 273–283. [49] K. Huang, B. Wang, S. Guo, K. Li, Micropatterned ultrathin MOF membranes with enhanced molecular sieving property, Angew. Chem. Int. Ed. 57 (42) (2018) 13892–13896. [50] W.D. Fan, Y.P. Ying, S.B. Peh, H.Y. Yuan, Z.Q. Yang, Y.D. Yuan, D.C. Shi, X. Yu, C.J. Kang, D. Zhao, Multivariate polycrystalline metal–organic framework membranes for CO2/CH4 separation, J. Am. Chem. Soc. 143 (42) (2021) 17716–17723. [51] Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, Y.M. Lee, Metal–organic framework membranes fabricated via reactive seeding, Chem. Commun. 47 (2) (2011) 737–739. [52] J.P. Nan, X.L. Dong, W.J. Wang, W.Q. Jin, Formation mechanism of metal–organic framework membranes derived from reactive seeding approach, Microporous Mesoporous Mater. 155 (2012) 90–98. [53] H.L. Guo, G.S. Zhu, I.J. Hewitt, S.L. Qiu, “Twin copper source” growth of metal–organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2, J. Am. Chem. Soc. 131 (5) (2009) 1646–1647. [54] Z.X. Kang, M. Xue, L.L. Fan, J.Y. Ding, L.J. Guo, L.X. Gao, S.L. Qiu, “Single nickel source” in situ fabrication of a stable homochiral MOF membrane with chiral resolution properties, Chem. Commun. 49 (90) (2013) 10569–10571. [55] Z.X. Kang, M. Xue, L.L. Fan, L. Huang, L.J. Guo, G.Y. Wei, B.L. Chen, S.L. Qiu, Highly selective sieving of small gas molecules by using an ultra-microporous metal–organic framework membrane, Energy Environ. Sci. 7 (12) (2014) 4053–4060. [56] Z.X. Kang, L.L. Fan, S.S. Wang, D.F. Sun, M. Xue, S.L. Qiu, In situ confinement of free linkers within a stable MOF membrane for highly improved gas separation properties, CrystEngComm 19 (12) (2017) 1601–1606. [57] A.S. Huang, Q. Liu, N.Y. Wang, J. Caro, Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets, J. Mater. Chem. A 2 (22) (2014) 8246–8251. [58] Y.X. Sun, F. Yang, Q. Wei, N.X. Wang, X. Qin, S.K. Zhang, B. Wang, Z.R. Nie, S.L. Ji, H. Yan, J.R. Li, Oriented nano-microstructure-assisted controllable fabrication of metal–organic framework membranes on nickel foam, Adv. Mater. 28 (12) (2016) 2374–2381. [59] X. Qin, Y.X. Sun, N.X. Wang, Q. Wei, L.H. Xie, Y.B. Xie, J.R. Li, Nanostructure array assisted aggregation-based growth of a Co-MOF-74 membrane on a Ni-foam substrate for gas separation, RSC Adv. 6 (96) (2016) 94177–94183. [60] X.L. Hong, Z. Lu, Y.L. Zhao, L.X. Lyu, L. Ding, Y.Y. Wei, H.H. Wang, Fast fabrication of freestanding MXene-ZIF-8 dual-layered membranes for H2/CO2 separation, J. Membr. Sci. 642 (2022) 119982. [61] S. Zhou, Y.Y. Wei, L.B. Zhuang, L.X. Ding, H.H. Wang, Introduction of metal precursors by electrodeposition for the in situ growth of metal–organic framework membranes on porous metal substrates, J. Mater. Chem. A 5 (5) (2017) 1948–1951. [62] S. Zhou, Y.Y. Wei, J.M. Hou, L.X. Ding, H.H. Wang, Self-sacrificial template strategy coupled with smart in situ seeding for highly oriented metal–organic framework layers: From films to membranes, Chem. Mater. 29 (17) (2017) 7103–7107. [63] J.M. Hou, X.L. Hong, S. Zhou, Y.Y. Wei, H.H. Wang, Solvent-free route for metal–organic framework membranes growth aiming for efficient gas separation, AIChE J. 65 (2) (2019) 712–722. [64] W.B. Li, Z.H. Yang, G.L. Zhang, Z. Fan, Q. Meng, C. Shen, C.J. Gao, Stiff metal–organic framework–polyacrylonitrile hollow fiber composite membranes with high gas permeability, J. Mater. Chem. A 2 (7) (2014) 2110–2118. [65] W.B. Li, Q. Meng, C.Y. Zhang, G.L. Zhang, Metal–organic framework/PVDF composite membranes with high H2 permselectivity synthesized by ammoniation, Chem. Eur. J. 21 (19) (2015) 7224–7230. [66] E. Shamsaei, Z.X. Low, X.C. Lin, A. Mayahi, H.Y. Liu, X.W. Zhang, J. Zhe Liu, H.T. Wang, Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support, Chem. Commun. 51 (57) (2015) 11474–11477. [67] E. Shamsaei, X.C. Lin, Z.X. Low, Z. Abbasi, Y.X. Hu, J.Z. Liu, H.T. Wang, Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate, ACS Appl. Mater. Interfaces 8 (9) (2016) 6236–6244. [68] E. Barankova, X.Y. Tan, L.F. Villalobos, E. Litwiller, K.V. Peinemann, A metal chelating porous polymeric support: The missing link for a defect-free metal–organic framework composite membrane, Angew. Chem. Int. Ed. 56 (11) (2017) 2965–2968. [69] M.R. Abdul Hamid, S. Park, J.S. Kim, Y.M. Lee, H.K. Jeong, In situ formation of zeolitic–imidazolate framework thin films and composites using modified polymer substrates, J. Mater. Chem. A 7 (16) (2019) 9680–9689. [70] M.R. Abdul Hamid, S. Park, J.S. Kim, Y.M. Lee, H.K. Jeong, Synthesis of ultrathin zeolitic imidazolate framework ZIF-8 membranes on polymer hollow fibers using a polymer modification strategy for propylene/propane separation, Ind. Eng. Chem. Res. 58 (32) (2019) 14947–14953. [71] E. Barankova, N. Pradeep, K.V. Peinemann, Zeolite–imidazolate framework (ZIF-8) membrane synthesis on a mixed-matrix substrate, Chem. Commun. 49 (82) (2013) 9419. [72] L. Ge, W. Zhou, A.J. Du, Z.H. Zhu, Porous polyethersulfone-supported zeolitic imidazolate framework membranes for hydrogen separation, J. Phys. Chem. C 116 (24) (2012) 13264–13270. [73] Y.L. Zhao, Y.Y. Wei, L.X. Lyu, Q.Q. Hou, J. Caro, H.H. Wang, Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation, J. Am. Chem. Soc. 142 (50) (2020) 20915–20919. [74] J.W. Hou, P.D. Sutrisna, Y.T. Zhang, V. Chen, Formation of ultrathin, continuous metal–organic framework membranes on flexible polymer substrates, Angew. Chem. Int. Ed. 55 (12) (2016) 3947–3951. [75] Y.N. Wu, F.T. Li, H.M. Liu, W. Zhu, M.M. Teng, Y. Jiang, W.N. Li, D. Xu, D.H. He, P. Hannam, G.T. Li, Electrospun fibrous mats as skeletons to produce free-standing MOF membranes, J. Mater. Chem. 22 (33) (2012) 16971–16978. [76] L. Dumée, L. He, M. Hill, B. Zhu, M. Duke, J. Schütz, F.S. She, H.T. Wang, S. Gray, P. Hodgson, L.X. Kong, Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes, J. Mater. Chem. A 1 (32) (2013) 9208–9214. [77] S.X. Zhang, Z.G. Wang, H.T. Ren, F. Zhang, J. Jin, Nanoporous film-mediated growth of ultrathin and continuous metal–organic framework membranes for high-performance hydrogen separation, J. Mater. Chem. A 5 (5) (2017) 1962–1966. [78] A.S. Huang, H. Bux, F. Steinbach, J. Caro, Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker, Angew. Chem. Int. Ed. 49 (29) (2010) 4958–4961. [79] A.S. Huang, Y.F. Chen, N.Y. Wang, Z.Q. Hu, J.W. Jiang, J. Caro, A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation, Chem. Commun. 48 (89) (2012) 10981–10983. [80] J.Q. Liu, C.Y. Liu, A.S. Huang, Co-based zeolitic imidazolate framework ZIF-9 membranes prepared on α-Al2O3 tubes through covalent modification for hydrogen separation, Int. J. Hydrog. Energy 45 (1) (2020) 703–711. [81] Z.X. Kang, J.Y. Ding, L.L. Fan, M. Xue, D.L. Zhang, L.X. Gao, S.L. Qiu, Preparation of a MOF membrane with 3-aminopropyltriethoxysilane as covalent linker for xylene isomers separation, Inorg. Chem. Commun. 30 (2013) 74–78. [82] Z. Xie, J.H. Yang, J.Q. Wang, J. Bai, H.M. Yin, B. Yuan, J.M. Lu, Y. Zhang, L. Zhou, C.Y. Duan, Deposition of chemically modified α-Al2O3 particles for high performance ZIF-8 membrane on a macroporous tube, Chem. Commun. 48 (48) (2012) 5977–5979. [83] M.C. McCarthy, V. Varela-Guerrero, G.V. Barnett, H.K. Jeong, Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures, Langmuir 26 (18) (2010) 14636–14641. [84] Q. Liu, N.Y. Wang, J. Caro, A.S. Huang, Bio-inspired polydopamine: A versatile and powerful platform for covalent synthesis of molecular sieve membranes, J. Am. Chem. Soc. 135 (47) (2013) 17679–17682. [85] A.S. Huang, Q. Liu, N.Y. Wang, Y.Q. Zhu, J. Caro, Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity, J. Am. Chem. Soc. 136 (42) (2014) 14686–14689. [86] N.Y. Wang, Y. Liu, Z.W. Qiao, L. Diestel, J. Zhou, A.S. Huang, J. Caro, Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity, J. Mater. Chem. A 3 (8) (2015) 4722–4728. [87] X.C. Wu, W. Wei, J.W. Jiang, J. Caro, A.S. Huang, High-flux high-selectivity metal–organic framework MIL-160 membrane for xylene isomer separation by pervaporation, Angew. Chem. Int. Ed. 57 (47) (2018) 15354–15358. [88] S.Y. Zhou, X.Q. Zou, F.X. Sun, F. Zhang, S.J. Fan, H.J. Zhao, T. Schiestel, G.S. Zhu, Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation, J. Mater. Chem. 22 (20) (2012) 10322–10328. [89] R. Ranjan, M. Tsapatsis, Microporous metal organic framework membrane on porous support using the seeded growth method, Chem. Mater. 21 (20) (2009) 4920–4924. [90] T. Ben, C.J. Lu, C.Y. Pei, S.X. Xu, S.L. Qiu, Polymer-supported and free-standing metal–organic framework membrane, Chem. Eur. J. 18 (33) (2012) 10250–10253. [91] H.T. Kwon, H.K. Jeong, Highly propylene-selective supported zeolite–imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth, Chem. Commun. 49 (37) (2013) 3854–3856. [92] R. Wu, Y.H. Li, A.S. Huang, Synthesis of high-performance Co-based ZIF-67 membrane for H2 separation by using cobalt ions chelated PIM-1 as interface layer, J. Membr. Sci. 620 (2021) 118841. [93] C.J. Yu, Y.Y. Liang, W.J. Xue, Z.Q. Zhang, X.M. Jia, H.L. Huang, Z.H. Qiao, D.H. Mei, C.L. Zhong, Polymer-supported ultra-thin ZIF-67 membrane through in situ interface self-repair, J. Membr. Sci. 625 (2021) 119139. [94] Y. Liu, Y. Peng, N. Wang, Y. Li, J.H. Pan, W. Yang, J. Caro, Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors, ChemSusChem 8 (21) (2015) 3582–3586. [95] L.Y. Kong, X.F. Zhang, H.O. Liu, J.S. Qiu, Synthesis of a highly stable ZIF-8 membrane on a macroporous ceramic tube by manual-rubbing ZnO deposition as a multifunctional layer, J. Membr. Sci. 490 (2015) 354–363. [96] A. Kasik, J. James, Y.S. Lin, Synthesis of ZIF-68 membrane on a ZnO modified α-alumina support by a modified reactive seeding method, Ind. Eng. Chem. Res. 55 (10) (2016) 2831–2839. [97] B. Reif, J. Somboonvong, F. Fabisch, M. Kaspereit, M. Hartmann, W. Schwieger, Solvent-free transformation of spray coated ZnO layers to ZIF-8 membranes, Microporous Mesoporous Mater. 276 (2019) 29–40. [98] M. Drobek, M. Bechelany, C. Vallicari, A. Abou Chaaya, C. Charmette, C. Salvador-Levehang, P. Miele, A. Julbe, An innovative approach for the preparation of confined ZIF-8 membranes by conversion of ZnO ALD layers, J. Membr. Sci. 475 (2015) 39–46. [99] X. Ma, P. Kumar, N. Mittal, A. Khlyustova, P. Daoutidis, K.A. Mkhoyan, M. Tsapatsis, Zeolitic imidazolate framework membranes made by ligand-induced permselectivation, Science 361 (6406) (2018) 1008–1011. [100] Y.Y. Mao, W. Cao, J.W. Li, Y. Liu, Y.L. Ying, L.W. Sun, X.S. Peng, Enhanced gas separation through well-intergrown MOF membranes: Seed morphology and crystal growth effects, J. Mater. Chem. A 1 (38) (2013) 11711–11716. [101] J.W. Li, W. Cao, Y.Y. Mao, Y.L. Ying, L.W. Sun, X.S. Peng, Zinc hydroxide nanostrands: Unique precursors for synthesis of ZIF-8 thin membranes exhibiting high size-sieving ability for gas separation, CrystEngComm 16 (42) (2014) 9788–9791. [102] X.F. Zhang, Y.G. Liu, S.H. Li, L.Y. Kong, H.O. Liu, Y.S. Li, W. Han, K.L. Yeung, W.D. Zhu, W.S. Yang, J.S. Qiu, New membrane architecture with high performance: ZIF-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation, Chem. Mater. 26 (5) (2014) 1975–1981. [103] Y.J. Li, C.C. Ma, P. Nian, H.O. Liu, X.F. Zhang, Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water–solvent solution by ZnO nanorods self-converted strategy for gas separation, J. Membr. Sci. 581 (2019) 344–354. [104] P. Nian, Y.J. Li, X. Zhang, Y. Cao, H.O. Liu, X.F. Zhang, ZnO nanorod-induced heteroepitaxial growth of SOD type Co-based zeolitic imidazolate framework membranes for H2 separation, ACS Appl. Mater. Interfaces 10 (4) (2018) 4151–4160. [105] P. Nian, Y. Cao, Y.J. Li, X. Zhang, Y.L. Wang, H.O. Liu, X.F. Zhang, Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H2 separation, CrystEngComm 20 (17) (2018) 2440–2448. [106] Y. Liu, N.Y. Wang, L. Diestel, F. Steinbach, J. Caro, MOF membrane synthesis in the confined space of a vertically aligned LDH network, Chem. Commun. 50 (32) (2014) 4225–4227. [107] Y. Liu, N. Wang, J.H. Pan, F. Steinbach, J. Caro, In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates, J. Am. Chem. Soc. 136 (41) (2014) 14353–14356. [108] Y. Liu, J.H. Pan, N.Y. Wang, F. Steinbach, X.L. Liu, J. Caro, Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal–organic frameworks, Angew. Chem. Int. Ed. 54 (10) (2015) 3028–3032. [109] X.F. Zhang, Y.G. Liu, L.Y. Kong, H.O. Liu, J.S. Qiu, W. Han, L.T. Weng, K.L. Yeung, W.D. Zhu, A simple and scalable method for preparing low-defect ZIF-8 tubular membranes, J. Mater. Chem. A 1 (36) (2013) 10635–10638. [110] P.C. Su, W.B. Li, C.Y. Zhang, Q. Meng, C. Shen, G.L. Zhang, Metal based gels as versatile precursors to synthesize stiff and integrated MOF/polymer composite membranes, J. Mater. Chem. A 3 (40) (2015) 20345–20351. [111] W.B. Li, P.C. Su, Z.J. Li, Z.H. Xu, F. Wang, H.S. Ou, J.H. Zhang, G.L. Zhang, E. Zeng, Ultrathin metal–organic framework membrane production by gel–vapour deposition, Nat. Commun. 8 (1) (2017) 406. [112] L.L. Liu, M. Zhang, T.T. Ji, J.H. Yan, Y.W. Sun, G.H. He, Y. Liu, Sustainable fabrication of the zeolitic imidazolate framework-67 membrane via supercritical fluid processing of the Co-based gel layer, Chem. Mater. 33 (18) (2021) 7350–7356. [113] S.R. Venna, M.A. Carreon, Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation, J. Am. Chem. Soc. 132 (1) (2010) 76–78. [114] K. Tao, C.L. Kong, L. Chen, High performance ZIF-8 molecular sieve membrane on hollow ceramic fiber via crystallizing-rubbing seed deposition, Chem. Eng. J. 220 (2013) 1–5. [115] Z.X. Zhao, X.L. Ma, Z. Li, Y.S. Lin, Synthesis, characterization and gas transport properties of MOF-5 membranes, J. Membr. Sci. 382 (1–2) (2011) 82–90. [116] J.W. Yuan, W.S. Hung, H.P. Zhu, K.C. Guan, Y.F. Ji, Y.Y. Mao, G.P. Liu, K.R. Lee, W.Q. Jin, Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater, J. Membr. Sci. 572 (2019) 20–27. [117] N.T. Tran, J. Kim, M.R. Othman, Microporous ZIF-8 and ZIF-67 membranes grown on mesoporous alumina substrate for selective propylene transport, Sep. Purif. Technol. 233 (2020) 116026. [118] Z. Li, P.P. Yang, S.C. Yan, Q.R. Fang, M. Xue, S.L. Qiu, A robust zeolitic imidazolate framework membrane with high H2/CO2 separation performance under hydrothermal conditions, ACS Appl. Mater. Interfaces 11 (17) (2019) 15748–15755. [119] F.C. Wu, L. Lin, H.O. Liu, H.T. Wang, J.S. Qiu, X.F. Zhang, Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth, J. Membr. Sci. 544 (2017) 342–350. [120] K. Tao, L.J. Cao, Y.C. Lin, C.L. Kong, L. Chen, A hollow ceramic fiber supported ZIF-8 membrane with enhanced gas separation performance prepared by hot dip-coating seeding, J. Mater. Chem. A 1 (42) (2013) 13046–13049. [121] Y.S. Li, F.Y. Liang, H. Bux, A. Feldhoff, W.S. Yang, J. Caro, Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity, Angew. Chem. Int. Ed. 49 (3) (2010) 548–551. [122] H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y.S. Li, J. Caro, Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation, Chem. Mater. 23 (8) (2011) 2262–2269. [123] D.M. Jiang, A.D. Burrows, Y.L. Xiong, K.J. Edler, Facile synthesis of crack-free metal–organic framework films on alumina by a dip-coating route in the presence of polyethylenimine, J. Mater. Chem. A 1 (18) (2013) 5497–5500. [124] Q. Ma, K. Mo, S.S. Gao, Y.F. Xie, J.Z. Wang, H. Jin, A. Feldhoff, S.T. Xu, J.Y.S. Lin, Y.S. Li, Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation, Angew. Chem. Int. Ed. 59 (49) (2020) 21909–21914. [125] Q. Ma, X. Wang, H. Jin, S.W. Feng, W. Fang, Y.S. Li, Highly permeable ZIF-8 membranes for propylene permselective pervaporation under high pressure up to 20 bar, J. Membr. Sci. 643 (2022) 120055. [126] J.Y. Zhu, J.W. Hou, A. Uliana, Y.T. Zhang, M.M. Tian, B. van der Bruggen, The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes, J. Mater. Chem. A 6 (9) (2018) 3773–3792. [127] Z.Y. Yeo, P.W. Zhu, A.R. Mohamed, S.P. Chai, A well inter-grown ZIF-8 membrane synthesized via two-step hydrothermal synthesis on coarse α-Al2O3 support, Mater. Lett. 129 (2014) 162–165. [128] Y.N. Ma, Z.P. Dong, M. You, Y.F. Zhang, X.S. Feng, X.H. Ma, J.Q. Meng, Formation of a thin and continuous MOF membrane with 2-D MOF nanosheets as seeds via layer-by-layer growth, Chem. Commun. 55 (68) (2019) 10146–10149. [129] X.X. Ma, Y.H. Li, A.S. Huang, Synthesis of nano-sheets seeds for secondary growth of highly hydrogen permselective ZIF-95 membranes, J. Membr. Sci. 597 (2020) 117629. [130] X.X. Ma, Z. Wan, Y.H. Li, X. He, J. Caro, A.S. Huang, Anisotropic gas separation in oriented ZIF-95 membranes prepared by vapor-assisted in-plane epitaxial growth, Angew. Chem. Int. Ed. 59 (47) (2020) 20858–20862. [131] W.B. Li, G.L. Zhang, C.Y. Zhang, Q. Meng, Z. Fan, C.J. Gao, Synthesis of trinity metal–organic framework membranes for CO2 capture, Chem. Commun. 50 (24) (2014) 3214–3216. [132] L.L. Fan, M. Xue, Z.X. Kang, H. Li, S.L. Qiu, Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis, J. Mater. Chem. 22 (48) (2012) 25272–25276. [133] J. Hao, D.J. Babu, Q. Liu, H.Y. Chi, C.X. Lu, Y.D. Liu, K.V. Agrawal, Synthesis of high-performance polycrystalline metal–organic framework membranes at room temperature in a few minutes, J. Mater. Chem. A 8 (16) (2020) 7633–7640. [134] Y.W. Sun, Y. Liu, J. Caro, X.W. Guo, C.S. Song, Y. Liu, In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity, Angew. Chem. Int. Ed. 57 (49) (2018) 16088–16093. [135] Y.W. Sun, C.S. Song, X.W. Guo, Y. Liu, Concurrent manipulation of out-of-plane and regional in-plane orientations of NH2-UiO-66 membranes with significantly reduced anisotropic grain boundary and superior H2/CO2 separation performance, ACS Appl. Mater. Interfaces 12 (4) (2020) 4494–4500. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||