[1] J. Solsvik, H.A. Jakobsen, Single drop breakup experiments in stirred liquidliquid tank, Chem. Eng. Sci. 131(2015) 219-234. [2] C. Srilatha, V.V. Morab, T.P. Mundada, A.W. Patwardhan, Relation between hydrodynamics and drop size distributions in pump-mix mixer, Chem. Eng. Sci. 65(2010) 3409-3426. [3] M. Ashar, D. Arlov, F. Carlsson, F. Innings, R. Andersson, Single droplet breakup in a rotor-stator mixer, Chem. Eng. Sci. 181(2018) 186-198. [4] S. Galinat, O. Masbernat, P. Guiraud, C. Dalmazzone, C. Noïk, Drop break-up in turbulent pipe flow downstream of a restriction, Chem. Eng. Sci. 60(2005) 6511-6528. [5] K.A. Sallam, Z. Dai, G.M. Faeth, Liquid breakup at the surface of turbulent round liquid jets in still gases, Int. J. Multiphase Flow 28(2002) 427-449. [6] G.I. Taylor, The formation of emulsions in definable fields of flow, P. Roy. Soc. AMath. Phys. 146(1934) 501-523. [7] H.P. Grace, Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems, Chem. Eng. Commun. 14(1982) 225-277. [8] B.J. Bentley, L.G. Leal, A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows, J. Fluid Mech. 167(1986) 219-240. [9] R.A. de Bruijn, Tipstreaming of drops in simple shear flows, Chem. Eng. Sci. 48(1993) 277-284. [10] C.A. Coulaloglou, L.L. Tavlarides, Description of interaction processes in agitated liquid liquid dispersions, Chem. Eng. Sci. 32(1977) 1289-1297. [11] G. Narsimhan, J.P. Gupta, D. Ramkrishna, A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions, Chem. Eng. Sci. 34(1979) 257-265. [12] C.-H. Lee, L.E. Erickson, L.A. Glasgow, Dynamics of bubble size distribution in turbulent gas-liquid dispersions, Chem. Eng. Commun. 61(2007) 181-195. [13] C.-H. Lee, L.E. Erickson, L.A. Glasgow, Bubble breakup and coalescence in turbulent gas-liquid dispersions, Chem. Eng. Commun. 59(2010) 65-84. [14] F. Lehr, M. Millies, D. Mewes, Bubble-size distributions and flow fields in bubble columns, AIChE J. 48(2002) 2426-2443. [15] Y. Liao, D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci. 64(2009) 3389-3406. [16] W. Liang, D. Wang, Z. Cai, Z. Li, X. Huang, Z. Gao, J.J. Derksen, A.E. Komrakova, Deformation and breakup of single drop in laminar and transitional jet flows, Chem. Eng. J. 386(2020) 121812. [17] J. Canny, A computational approach to edge detection, IEEE T. Pattern Anal. 6(1986) 679-698. [18] J. Westerweel, F. Scarano, Universal outlier detection for PIV data, Exp. Fluids 39(2005) 1096-1100. [19] J.C. Agüí, J. Jiménez, On the performance of particle tracking, J. Fluid Mech. 185(1987) 447-468. [20] Y. Zhang, Z. Gao, Z. Li, J.J. Derksen, Transitional flow in a Rushton turbine stirred tank, AIChE J. 63(2017) 3610-3623. [21] K.V. Sharp, R.J. Adrian, PIV study of small-scale flow structure around a Rushton turbine, AIChE J. 47(2001) 766-778. [22] J. Sheng, H. Meng, R.O. Fox, A large eddy PIV method for turbulence dissipation rate estimation, Chem. Eng. Sci. 55(2000) 4423-4434. [23] G. Bertens, D. van der Voort, H. Bocanegra-Evans, W. van de Water, Large-eddy estimate of the turbulent dissipation rate using PIV, Exp. Fluids 56(2015) 1-9. [24] C. Meneveau, T.S. Lund, The dynamic Smagorinsky model and scale-dependent coefficients in the viscous range of turbulence, Phys. Fluids 9(1997) 3932-3934. [25] S. Baldi, M. Yianneskis, On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements, Chem. Eng. Sci. 59(2004) 2659-2671. [26] N. Ninimiya, K. Yasuda, Visualization and PIV measurement of the flow around and inside of a falling droplet, J. Visual-Japan 9(2006) 257-264. [27] G. Li, Z. Gao, Z. Li, J. Wang, J.J. Derksen, Particle-resolved PIV experiments of solid-liquid mixing in a turbulent stirred tank, AIChE J. 64(2018) 389-402. [28] S. Chen, G.D. Doolen, Lattice boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30(1998) 329-364. |