[1] F. Ahmadvand, M.R. Talaie, CFD modeling of droplet dispersion in a Venturi scrubber, Chem. Eng. J. 160(2) (2010) 423-431210. [2] S.W. Lee, H.C. No, Droplet size prediction model based on the upper limit log-normal distribution function in venturi scrubber, Nucl. Eng. Technol. 51(5) (2019) 1261-1271. [3] P. Goel, A. Moharana, A.K. Nayak, Numerical simulation of injection characteristics, hydrodynamics and absorption of iodine vapour in a venturi scrubber operating in self-priming mode, Nucl. Eng. Des. 341(2019) 360-367. [4] M. Ochowiak, L. Broniarz-Press, The flow resistance and aeration in modified spray tower, Chem. Eng. Process. 50(3) (2011) 345-350. [5] S.A. Ghorbanian, H. Abolghasemi, S.R. Radpour, Modelling of mean drop size in a extraction spray column and developing a new model, Iran. J. Chem. Chem. Eng. 30(4) (2011) 89-96. [6] G. Yincheng, N. Zhenqi, L. Wenyi, Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column, Energy Procedia 4(2011) 512-518. [7] S. Ramkumar, E.J. Grave, P.R. Larnholm, D. Thierens, cMIST™:Novel, compact dehydration system for reducing size and weight, Offshore Technology Conference, Houston, Texas, USA, 2017. [8] S. Northrop, J. Seagraves, S. Ramkumar, T. Cullinane, ExxonMobil's experience with sour gas treating and acid Gas handling, Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 2019. [9] P.F. Biard, A. Couvert, C. Renner, Intensification of volatile organic compound absorption in a compact wet scrubber at co-current flow, Chemosphere 173(4) (2017) 612-621. [10] P.F. Biard, A. Couvert, C. Renner, J.P. Levasseur, Assessment and optimisation of VOC mass transfer enhancement by advanced oxidation process in a compact wet scrubber, Chemosphere 77(2) (2009) 182-187. [11] T. Inamura, N. Nagai, Spray characteristics of liquid jet traversing subsonic airstreams, J. Propuls. Power 13(2) (1997) 250-256. [12] P.-K. Wu, K.A. Kirkendall, R.P. Fuller, A.S. Nejad, Breakup processes of liquid jets in subsonic crossflows, J. Propuls. Power 13(1) (1997) 64-73. [13] J. Mazallon, Z. Dai, G.M. Faeth, Primary breakup of nonturbulent round liquid jets in gas crossflows, Atomization Sprays 9(3) (1999) 291-312. [14] K.A. Sallam, C. Aalburg, G.M. Faeth, Breakup of round nonturbulent liquid jets in gaseous crossflow, AIAA J. 42(12) (2004) 2529-2540. [15] T. Inamura, Trajectory of a liquid jet traversing subsonic airstreams, J. Propuls. Power 16(1) (2000) 155-157. [16] T. Oda, H. Hiroyasu, M. Arai, K. Nishida, Characterization of liquid jet atomization across a high-speed airstream, JSME Int. J., Ser. B 37(4) (1994) 937-944. [17] B. Miller, K.A. Sallam, M. Bingabr, K.C. Lin, C. Carter, Breakup of aerated liquid jets in subsonic crossflow, J. Propuls. Power 24(2) (2008) 253-258. [18] D. Olinger, J. Lee, A. Osta, K. Sallam, K.-C. Lin, C. Carter, Digital holographic analysis of near-field aerated liquid jets in crossflow. Part I:Algorithm Development, 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, USA, 2013. [19] J. Becker, C. Hassa, Breakup and atomization of a kerosene jet in crossflow at elevated pressure, Atomization Sprays 12(1-3) (2002) 49-67. [20] R. Surya Prakash, A. Sinha, G. Tomar, R.V. Ravikrishna, Liquid jet in crossflow-effect of liquid entry conditions, Exp. Thermal Fluid Sci. 93(2018) 45-56. [21] S. Rezayat, M. Farshchi, M. Ghorbanhoseini, Primary breakup dynamics and spray characteristics of a rotary atomizer with radial-axial discharge channels, Int. J. Multiphase Flow 111(2019) 315-338. [22] G. Vich, M. Ledoux, Investigation of a liquid jet in a subsonic cross-flow, Int. J. Fluid Mech. Res. 24(1-3) (1997) 1-12. [23] C.L. Ng, R. Sankarakrishnan, K.A. Sallam, Bag breakup of nonturbulent liquid jets in crossflow, Int. J. Multiphase Flow 34(3) (2008) 241-259. [24] A. Mashayek, M. Behzad, N. Ashgriz, Multiple injector model for primary breakup of a liquid jet in crossflow, AIAA J. 49(11) (2011) 2407-2420. [25] M. Broumand, M. Birouk, Liquid jet in a subsonic gaseous crossflow:recent progress and remaining challenges, Prog. Energy Combust. Sci. 57(2016) 1-29. [26] M. Behzad, N. Ashgriz, B.W. Karney, Surface breakup of a non-turbulent liquid jet injected into a high pressure gaseous crossflow, Int. J. Multiphase Flow 80(2016) 100-117. [27] M. Rachner, J. Becker, C. Hassa, T. Doerr, Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions, Aerosp. Sci. Technol. 6(7) (2002) 495-506. [28] J. Song, C. Cary Cain, J. Guen Lee, Liquid jets in subsonic air crossflow at elevated pressure, J. Eng. Gas Turbines Power 137(4) (2014) 1-12. [29] M. Broumand, M.M.A. Ahmed, M. Birouk, Experimental investigation of spray characteristics of a liquid jet in a turbulent subsonic gaseous crossflow, Proc. Combust. Inst. 37(3) (2019) 3237-3244. [30] P.-K. Wu, K.A. Kirkendall, R.P. Fuller, A.S. Nejad, Spray structures of liquid jets atomized in subsonic crossflows, J. Propuls. Power 14(2) (1998) 173-182. [31] E. Lubarsky, J.R. Reichel, B.T. Zinn, R. McAmis, Spray in crossflow:dependence on weber number, J. Eng. Gas Turbines Power 132(2) (2010). [32] E. Farvardin, M. Johnson, H. Alaee, A. Martinez, A. Dolatabadi, Comparative study of biodiesel and diesel jets in gaseous crossflow, J. Propuls. Power 29(6) (2013) 1292-1302. [33] Y. Song, D. Hwang, K. Ahn, Effect of orifice geometry on spray characteristics of liquid jet in cross flow, 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, USA, 2017. [34] S. Poozesh, N. Setiawan, N.K. Akafuah, K. Saito, P.J. Marsac, Assessment of predictive models for characterizing the atomization process in a spray dryer's bi-fluid nozzle, Chem. Eng. Sci. 180(2018) 42-51. [35] S. Poozesh, S.W. Grib, M.W. Renfro, P.J. Marsac, Near-field dynamics of high-speed spray dryer coannular two fluid nozzle:Effects of operational conditions and formulations, Powder Technol. 333(2018) 439-448. [36] S. Moon, Y. Gao, J. Wang, K. Fezzaa, T. Tsujimura, Near-field dynamics of high-speed diesel sprays:Effects of orifice inlet geometry and injection pressure, Fuel 133(2014) 299-309. [37] O. Elshamy, S. Tambe, J. Cai, S.-M. Jeng, PIV and LDV measurements for liquid jets in crossflow, 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 2007. [38] L.Q. Li, W. Huang, L. Yan, Mixing augmentation induced by a vortex generator located upstream of the transverse gaseous jet in supersonic flows, Aerosp. Sci. Technol. 68(2017) 77-89. |