[1] D.J. Mcclements, Edible nanoemulsions:Fabrication, properties, and functional performance, Soft Matter 7(6) (2011) 2297-2316.[2] C. Qian, D.J. Mcclements, Formation of nanoemulsions stabilized by model foodgrade emulsifiers using high-pressure homogenization:Factors affecting particle size, Food Hydrocolloids 25(5) (2011) 1000-1008.[3] P. Glampedaki, V. Dutschk, Stability studies of cosmetic emulsions prepared from natural products such as wine, grape seed oil and mastic resin, Colloids Surf. A Physicochem. Eng. Asp. 460(0) (2014) 306-311.[4] N. Kiss, G. Brenn, H. Pucher, et al., Formation of O/W emulsions by static mixers for pharmaceutical applications, Chem. Eng. Sci. 66(21) (2011) 5084-5094.[5] S.M.T. Gharibzahedi, S.H. Razavi, S.M.Mousavi, Ultrasound-assisted formation of the canthaxanthin emulsions stabilized by arabic and xanthan gums, Carbohydr. Polym. 96(1) (2013) 21-30.[6] L. Yu, C. Li, J. Xu, et al., Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature, Langmuir 28(41) (2012) 14547-14552.[7] C. Solans, P. Izquierdo, J. Nolla, et al., Nano-emulsions, Curr. Opin. Colloid Interface 10(3-4) (2005) 102-110.[8] A. Khalil, F. Puel, Y. Chevalier, et al., Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis, Chem. Eng. J. 165(3) (2010) 946-957.[9] J. Floury, A. Desrumaux, J. Lardières, Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions, Innovative Food Sci. Emerg. Technol. 1(2) (2000) 127-134.[10] S. Lee, T. Lefèvre, M. Subirade, et al., Effects of ultra-high pressure homogenization on the properties and structure of interfacial protein layer in whey proteinstabilized emulsion, Food Chem. 113(1) (2009) 191-195.[11] J.M. Perrier-Cornet, P. Marie, P. Gervais, Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization, J. Food Eng. 66(2) (2005) 211-217.[12] K.A. Ramisetty, A.B. Pandit, P.R. Gogate, Ultrasound assisted preparation of emulsion of coconut oil in water:Understanding the effect of operating parameters and comparison of reactor designs, Chem. Eng. Process. Process Intensif. 88(0) (2015) 70-77.[13] S.Y. Tang, P. Shridharan, M. Sivakumar, Impact of process parameters in the generation of novel aspirin nanoemulsions-Comparative studies between ultrasound cavitation and microfluidizer, Ultrason. Sonochem. 20(1) (2013) 485-497.[14] T.J. Wooster, M. Golding, P. Sanguansri, Impact of oil type on nanoemulsion formation and Ostwald ripening stability, Langmuir 24(22) (2008) 12758-12765.[15] J.N. Wilking, C.B. Chang, M.M. Fryd, et al., Shear-induced disruption of dense nanoemulsion gels, Langmuir 27(9) (2011) 5204-5210.[16] M.M. Fryd, T.G. Mason, Advanced nanoemulsions, Annu. Rev. Phys. Chem. 63(2012) 493-518.[17] S.M. Joscelyne, G. Trägårdh, Membrane emulsification-A literature review, J. Membr. Sci. 169(1) (2000) 107-117.[18] T. Li, Y. Zhou, J. Wang, et al., High-throughput emulsification in a microporous tubein-tubemicrochannel device:O/Wemulsion formation, Chem. Eng. J. 228(0) (2013) 155-161.[19] D.M. Lloyd, I.T. Norton, F. Spyropoulos, Processing effects during rotating membrane emulsification, J. Membr. Sci. 466(0) (2014) 8-17.[20] S.Y. Tang, M. Sivakumar, A novel and facile liquid whistle hydrodynamic cavitation reactor to produce submicron multiple emulsions, AICHE J. 59(1) (2013) 155-167.[21] S. Parthasarathy, Y.T. Siah, S. Manickam, Generation and optimization of palm oilbased oil-in-water (O/W) submicron-emulsions and encapsulation of curcumin using a liquid whistle hydrodynamic cavitation reactor (LWHCR), Ind. Eng. Chem. Res. 52(34) (2013) 11829-11837.[22] K.A. Ramisetty, A.B. Pandit, P.R. Gogate, Novel approach of producing oil in water emulsion using hydrodynamic cavitation reactor, Ind. Eng. Chem. Res. 53(42) (2014) 16508-16515.[23] K.S. Suslick, M.M.Mdleleni, J.T. Ries, Chemistry induced by hydrodynamic cavitation, J. Am. Chem. Soc. 119(39) (1997) 9303-9304.[24] K.P. Senthil, K.M. Siva, A.B. Pandit, Experimental quantification of chemical effects of hydrodynamic cavitation, Chem. Eng. Sci. 55(9) (2000) 1633-1639.[25] V.K. Saharan, A.B. Pandit, P.S. Satish Kumar, et al., Hydrodynamic cavitation as an advanced oxidation technique for the degradation of acid red 88 dye, Ind. Eng. Chem. Res. 51(4) (2012) 1981-1989.[26] J.S. Raut, S.D. Stoyanov, C. Duggal, et al., Hydrodynamic cavitation:A bottom-up approach to liquid aeration, Soft Matter 8(17) (2012) 4562-4566.[27] D. Li,M.B.Mueller, S. Gilje, et al., Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3(2) (2008) 101-105.[28] D.H. Everett, Basic principles of colloid science[M], Royal Society of Chemistry, 1988.[29] D. Ghayal, A.B. Pandit, V.K. Rathod, Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil, Ultrason. Sonochem. 20(1) (2013) 322-328.[30] P. Braeutigam, M. Franke, Z.L. Wu, et al., Role of different parameters in the optimization of hydrodynamic cavitation, Chem. Eng. Technol. 33(6) (2010) 932-940.[31] X. Bernat, E. Piacentini, F. Bazzarelli, et al., Ferrous ion effects on the stability and properties of oil-in-water emulsions formulated by membrane emulsification, Ind. Eng. Chem. Res. 49(8) (2010) 3818-3829. |