中国化学工程学报 ›› 2021, Vol. 39 ›› Issue (11): 1-15.DOI: 10.1016/j.cjche.2021.03.007
• Reviews • 下一篇
Shuaifeng Zhang1,2, Qinghua Zhang1,2, Jianzhuang Shang3, Zaisha Mao1, Chao Yang1,2
收稿日期:
2020-12-20
修回日期:
2021-03-02
出版日期:
2021-11-28
发布日期:
2021-12-27
通讯作者:
Qinghua Zhang, Chao Yang
基金资助:
Shuaifeng Zhang1,2, Qinghua Zhang1,2, Jianzhuang Shang3, Zaisha Mao1, Chao Yang1,2
Received:
2020-12-20
Revised:
2021-03-02
Online:
2021-11-28
Published:
2021-12-27
Contact:
Qinghua Zhang, Chao Yang
Supported by:
摘要: The particle size distribution of polymer always develops in emulsion polymerization systems, and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribution. This review mainly focuses on the measurement methods of particle size distribution rather than average particle size during the emulsion polymerization process, including the existing off-line, on-line, and in-line measurement methods. Moreover, the principle, resolution, performance, advantages, and drawbacks of various methods for evaluating particle size distribution are contrasted and illustrated. Besides, several possible development directions or solutions of the in-line measurement technology are explored
Shuaifeng Zhang, Qinghua Zhang, Jianzhuang Shang, Zaisha Mao, Chao Yang. Measurement methods of particle size distribution in emulsion polymerization[J]. 中国化学工程学报, 2021, 39(11): 1-15.
Shuaifeng Zhang, Qinghua Zhang, Jianzhuang Shang, Zaisha Mao, Chao Yang. Measurement methods of particle size distribution in emulsion polymerization[J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 1-15.
[1] A. Bellamine, E. Degrandi, M. Gerst, R. Stark, C. Beyers, C. Creton, Design of nanostructured waterborne adhesives with improved shear resistance, Macromol. Mater. Eng. 296(1) (2011) 31-41. [2] R. Jovanović, M.A. Dubé, Emulsion-based pressure-sensitive adhesives:A review, J. Macromol. Sci., Part C Polym. Rev. 44(1) (2004) 1-51. [3] L.N. Butler, C.M. Fellows, R.G. Gilbert, Effect of surfactants used for binder synthesis on the properties of latex paints, Prog. Org. Coat. 53(2) (2005) 112- 118. [4] Z.S. Lin, J.M. Goddard, Photocurable coatings prepared by emulsion polymerization present chelating properties, Colloids Surf. B 172(2018) 143-151. [5] D. England, N. Tambe, J. Texter, Stimuli-responsive nanolatexes:Porating films, ACS Macro. Lett. 1(2) (2012) 310-314. [6] J.M. Asua, Polymeric Dispersions:Principles and Applications, Springer, Netherlands, Berlin, 1997. [7] K. Surmacz, P. Chmielarz, Low ppm atom transfer radical polymerization in (mini)emulsion systems, Materials 13(7) (2020) 1717. [8] A. Sood, Particle size distribution control in emulsion polymerization, J. Appl. Polym. Sci. 92(5) (2004) 2884-2902. [9] D. Edouard, N. Sheibat-Othman, H. Hammouri, Observer design for particle size distribution in emulsion polymerization, AIChE J. 51(12) (2005) 3167- 3185. [10] L.I. Jacob, W. Pauer, In-line monitoring of latex-particle size during emulsion polymerizations with a high polymer content of more than 60%, RSC Adv. 10(44) (2020) 26528-26534. [11] J.M. Geurts, M. Lammers, A.L. German, The effect of bimodality of the particle size distribution on film formation of latices, Colloids Surf. A 108(2-3) (1996) 295-303. [12] A. Guyot, F. Chu, M. Schneider, C. Graillat, T.F. McKenna, High solid content latexes, Prog. Polym. Sci. 27(8) (2002) 1573-1615. [13] D.L. Chicoma, C. Sayer, R. Giudici, In-line monitoring of particle size during emulsion polymerization under different operational conditions using NIR spectroscopy, Macromol. React. Eng. 5(3-4) (2011) 150-162. [14] J. Herrera-Ordonez, Simplified calculation of the average number of radicals per particle in emulsion polymerization:Effect of particle nucleation and coagulation rates, Macromol. React. Eng. 13(6) (2019) 1900025. [15] N. Sheibat-Othman, H.M. Vale, J.M. Pohn, T.F.L. McKenna, Is modeling the PSD in emulsion polymerization a finished problem? An overview, Macromol. React. Eng. 11(5) (2017) 1600059. [16] R.W. Tess, G.W. Poehlein, Applied Polymer Science:Emulsion Polymerization, American Chemical Society, Washington, 1985. [17] W.D. Harkins, A general theory of the reaction loci in emulsion polymerization, J. Chem. Phys. 13(9) (1945) 381-382. [18] W.V. Smith, R.H. Ewart, Kinetics of emulsion polymerization, J. Chem. Phys. 16(6) (1948) 592-599. [19] P.A. Lovell, F.J. Schork, Fundamentals of emulsion polymerization, Biomacromolecules 21(11) (2020) 4396-4441. [20] C.S. Chern, Emulsion polymerization mechanisms and kinetics, Prog. Polym. Sci. 31(5) (2006) 443-486. [21] B.R. Jennings, K. Parslow, Particle size measurement:The equivalent spherical diameter, Proc. R. Soc. London, Ser. A 419(1988) 137-149. [22] H.G. Merkus, Particle Size Measurements, Fundamental, Practice, Quality, Springer, Netherlands, Berlin, 2009. [23] A. Jillavenkatesa, S.J. Dapkunas, L.H. Lum, Particle Size Characterization, NIST Recommended Practice Guide, Special Publication 960-1, Washington, 2001. [24] Z.H.Wang,H.Sun,EmulsionPolymerization,BeijingYanshanPress,Beijing,2015. [25] J. Emmerich, Q. Tang, Y.D. Wang, P. Neubauer, S. Junne, S. Maaß, Optical inline analysis and monitoring of particle size and shape distributions for multiple applications:Scientific and industrial relevance, Chin. J. Chem. Eng. 27(2) (2019) 257-277. [26] K. Landfester, S. Spiegel, R. Born, H.W. Spiess, On-line detection of emulsion polymerization by solid-state NMR spectroscopy, Colloid Polym. Sci. 276(4) (1998) 356-361. [27] M.M.E. Colmán, P.M.N. Ambrogi, C.S.R. Serra, P.H.H. Araujo, C. Sayer, R. Giudici, At-line monitoring of conversion in the inverse miniemulsion polymerization of acrylamide by Raman spectroscopy, Ind. Eng. Chem. Res. 55(22) (2016) 6317-6324. [28] E.S. Daniels, E.D. Sudol, M.E. El-Aasser, Polymer Colloids:Science and Technology of Lates systems, American Chemical Society, Washington, 2001. [29] M. Schneider, T.F. McKenna, Comparative study of methods for the measurement of particle size and size distribution of polymeric emulsions, Part. Part. Syst. Char. 19(1) (2002) 28-37. [30] H. Schuch, J. Klingler, P. Rossmanith, T. Frechen, M. Gerst, J. Feldthusen, A.H.E. Müller, Characterization of micelles of polyisobutylene-block-poly (methacrylic acid) in aqueous medium, Macromolecules 33(5) (2000) 1734- 1740. [31] W. Burchard, M. Schmidt, W.H. Stockmayer, Information on polydispersity and branching from combined quasi-elastic and integrated scattering, Macromolecules 13(5) (1980) 1265-1272. [32] L.J. Fetters, N.P. Balsara, J.S. Huang, H.S. Jeon, K. Almdal, M.Y. Lin, Aggregation in living polymer solutions by light and neutron scattering:A study of model ionomers, Macromolecules 28(14) (1995) 4996-5005. [33] J.Q. Zhao, E.M. Pearce, T.K. Kwei, H.S. Jeon, P.K. Kesani, N.P. Balsara, Micelles formed by a model hydrogen-bonding block copolymer, Macromolecules 28(6) (1995) 1972-1978. [34] J.M.F. Nogueira, M.A.R.B. Castanho, Crude tall-oil sodium salts micellization in aqueous solutions studied by static and dynamic light scattering, Colloids Surf. A 191(3) (2001) 263-268. [35] Y.H. Xu, Particle size analyses of porous silica and hybrid silica chromatographic support particles:Comparison of flow/hyperlayer fieldflow fractionation with scanning electron microscopy, electrical sensing zone, and static light scattering, J. Chromatogr. A 1191(1-2) (2008) 40-56. [36] J. Coe, C. Kupitz, S. Basu, C.E. Conrad, S. Roy-Chowdhury, R. Fromme, P. Fromme, Crystallization of photosystem II for time-resolved structural studies using an X-ray free electron laser, Methods Enzymol. 557(2015) 459-482. [37] A.R. Roig, J.L. Alessandrini, Particle size distributions from static light scattering with regularized non-negative least squares constraints, Part. Part. Syst. Char. 23(6) (2007) 431-437. [38] R.J.W. Hodgson, Genetic algorithm approach to the determination of particle size distributions from static light-scattering data, J. Colloid Interface Sci. 240(2) (2001) 412-418. [39] R.K. Tekade, Basic Fundamentals of Drug Delivery, Elsevier, Amsterdam, 2019. [40] O. Elizalde, G.P. Leal, J.R. Leiza, Particle size distribution measurements of polymeric dispersions:A comparative study, Part. Part. Syst. Char. 17(5-6) (2000) 236-243. [41] I. Hasanzadeh, M. Barikani, A.R. Mahdavian, Ultrasound-assisted emulsion polymerization of poly(methyl methacrylate-co-butyl acrylate):Effect of initiator content and temperature, Polym. Eng. Sci. 56(2) (2016) 214-221. [42] J. Keyvan Rad, A.R. Mahdavian, Photoswitchable dual-color fluorescent particles from seeded emulsion polymerization and role of some affecting parameters on FRET process, Eur. Polym. J. 88(2017) 56-66. [43] M. Abdollahi, M.R. Yousefi, M. Ghahramani, H. Ranjbar, F.S. Najafi, Synthesis of polybutadiene nanoparticles by emulsion polymerization:The effect of electrolyte and initiator type on particle size and reaction kinetics, Iran. Polym. J. 26(1) (2017) 1-10. [44] H. Harmain, C.H. Chan, Batch-to-batch reproducibility studies of pilot-scale emulsion polymerization of poly(styrene-co -butyl acrylate), Macromol. Symp. 382(1) (2018) 1800159. [45] W.H. Lee, J.R. Booth, S.A.F. Bon, On particle size distributions in catalytic chain transfer emulsion polymerization:Chain-extension and the use of derived macromonomers as reactive surfactants in emulsion polymerization, Biomacromolecules 21(11) (2020) 4599-4614. [46] J.M. Stubbs, D.C. Sundberg, A round robin study for the characterization of latex particle morphology-multiple analytical techniques to probe specific structural features, Polymer 46(4) (2005) 1125-1138. [47] L. Griveau, J. Delorme, J. Engstrom, P.Y. Dugas, A. Carlmark, E. Malmström, F. D'Agosto, M. Lansalot, Synergetic effect of water-soluble PEG-based macromonomers and cellulose nanocrystals for the stabilization of PMMA latexes by surfactant-free emulsion polymerization, Biomacromolecules 21(11) (2020) 4479-4491. [48] S. Bretler, U. Bretler, S. Margel, Engineering of new spiropyran photochromic fluorescent polymeric nanoparticles of narrow size distribution by emulsion polymerization process, Eur. Polym. J. 89(2017) 13-22. [49] J.H. Zhou, L. Wang, X.H. Zha, H.L. Wang, Synthesis of pH-responsive block copolymer micelles via RAFT polymerization induced self-assembly and its application in emulsifier-free emulsion polymerization, Phosphorus Sulfur 195(2) (2020) 131-141. [50] J. Maiti, A.A. Basfar, Encapsulation of carbon black by surfactant free emulsion polymerization process, Macromol. Res. 25(2) (2017) 120-127. [51] W.X. Huang, Z.P. Mao, Z.R. Xu, B. Xiang, J. Zhang, Synthesis and characterization of size-tunable core-shell structural polyacrylate-graft-poly (acrylonitrile-ran-styrene) (ASA) by pre-emulsion semi-continuous polymerization, Eur. Polym. J. 120(2019) 109247. [52] T. Kim, J.H. Song, J.H. Back, B. Seo, C.S. Lim, H.J. Paik, W. Lee, Flame retardant submicron particles via surfactant-free RAFT emulsion polymerization of styrene derivatives containing phosphorous, Polymers-Basel 12(6) (2020) 1244. [53] K.R. Li, L.F. Xie, B. Wang, J.H. Yan, H.R. Tang, D.H. Zhou, Mechanistic investigation of surfactant-free emulsion polymerization using magnetite nanoparticles modified by citric acid as stabilizers, Langmuir 36(28) (2020) 8290-8300. [54] S. Borphukan, M. Saikia, U. Baruah, A. Gautam, S.D. Baruah, P.J. Saikia, Synthesis of ethylene and butyl methacrylate-based copolymer by emulsion polymerization, J. Appl. Polym. Sci. 136(39) (2019) 47994. [55] L. Farias-Cepeda, J. Herrera-Ordonez, M. Estevez, G. Luna-Barcenas, L. RosalesMarines, New insights on surfactant-free styrene emulsion polymerization in the presence of sodium styrene sulfonate, Colloid Polym. Sci. 294(10) (2016) 1571-1576. [56] B.J. Liu, Y. Bai, C.F. Sun, M. Chen, Z.C. Cao, S. Du, L. Xu, M.Y. Zhang, Synthesis of monodisperse, re-dispersable polymer particles by one-step high solid emulsion polymerization in the presence of reactive surfactant, J. Disper. Sci. Technol. 40(9) (2019) 1256-1263. [57] L. Baissac, C.C. Buron, L. Hallez, P. Berçot, J.Y. Hihn, L. Chantegrel, G. Gosse, Synthesis of sub-micronic and nanometric PMMA particles via emulsion polymerization assisted by ultrasound:Process flow sheet and characterization, Ultrason. Sonochem. 40(B) (2018) 183-192. [58] R.M. Drake, J.E. Gordon, Mie scattering, Am. J. Phys. 53(10) (1985) 955- 962. [59] H. Du, Mie-scattering calculation, Appl. Opt. 43(9) (2004) 1951-1956. [60] Y.F. Yang, H. Yang, G. Zheng, K. Lan, Progress of particle size measurement by laser diffraction and scattering, Guangxue Jishu/Opt. Tech. 37(1) (2011) 19-24(in Chinese). [61] D.W. Cooper, Particulate contamination and microelectronics manufacturing:An introduction, Aerosol Sci. Tech. 5(3) (1986) 287-299. [62] L.A. Clementi, J.R. Vega, L.M. Gugliotta, A. Quirantes, Characterization of spherical core-shell particles by static light scattering. Estimation of the coreand particle-size distributions, J. Quant. Spectrosc. Radiat. Transf. 113(17) (2012) 2255-2264. [63] J. Weese, A reliable and fast method for the solution of Fredholm integralequations of the 1st kind based on Tikhonov regularization, Comput. Phys. Commun. 69(1) (1992) 99-111. [64] S.W. Provencher, A constrained regularization method for inverting data represented by linear algebraic or integral equations, Comput. Phys. Commun. 27(3) (1982) 213-227. [65] A.K. Livesey, P. Licinio, M. Delaye, Maximum entropy analysis of quasielastic light scattering from colloidal dispersions, J. Chem. Phys. 84(9) (1986) 5102- 5107. [66] S.L. Nyeo, B. Chu, Maximum-entropy analysis of photon correlation spectroscopy data, Macromolecules 22(10) (1989) 3998-4009. [67] A. Bjork, C.L. Lawson, R.J. Hanson, Solving least squares problems, Math. Comput. 30(135) (1976) 665. [68] R. Finsy, L. Deriemaeker, E. Geladé, J. Joosten, Inversion of static lightscattering measurements for particle-size distributions, J. Colloid Interface Sci. 153(2) (1992) 337-354. [69] A.M. Alb, W.F. Reed, Fundamental measurements in online polymerization reaction monitoring and control with a focus on ACOMP, Macromol. React. Eng. 4(8) (2010) 470-485. [70] W.-D. Hergeth, W. Lebek, E. Stettin, K. Witkowski, K. Schmutzler, Particle formation in emulsion polymerization II:Aggregation of primary particles, Macromol. Chem. Phys. 193(7) (1992) 1607-1621. [71] J. Stejskal, P. Kratochvíl, J. Urban, G.S. Kapur, Y. Lakshminarayana, Poly (methyl methacrylate) and polyacrylonitrile dispersions stabilized by gelatin, Polym. Int. 30(1) (1993) 81-87. [72] F. Schleife, D. Klank, C. Oetzel, Exact particle size and shape analysis in one instrument:combination of static light scattering and dynamic image analysis, Chem. Ing. Tech. 90(4) (2018) 419-426. [73] T. Oikawa, Electron microscope, Zairyo-to-Kankyo 41(10) (1992) 690- 697. [74] A. Mahdavi Akerdi, M. Nekoomanesh Haghighi, Binary mixtures of anionic double-chain sulfonate emulsifiers in VCM emulsion polymerization with high solid content:Effect of emulsifier's combination ratio and concentration, Polym. Bull. 77(5) (2020) 2697-2718. [75] B.J. Liu, Y.J. Deng, S.L. Sun, M.Y. Zhang, R.Q. Lin, H.X. Zhang, A novel approach to prepare large-scale and narrow-dispersed latex particles by emulsion polymerization based on particle coagulation mechanism, Des. Monomers Polym. 19(2) (2016) 119-127. [76] B.J. Liu, Z.Y. Fu, M.Y. Zhang, H.X. Zhang, Preparation of monodisperse, submicrometer polymer particles by one-step emulsion polymerization under particle coagulation, Colloid Polym. Sci. 294(4) (2016) 787-793. [77] M. Momota, H. Miike, H. Hashimoto, Measuring particle size distribution by digital image processing with inverse Fourier-Bessel transformation, Jpn. J. Appl. Phys. 33(Part 1, No. 2) (1994) 1189-1194. [78] C. Igathinathane, L.O. Pordesimo, E.P. Columbus, W.D. Batchelor, S.R. Methuku, Shape identification and particles size distribution from basic shape parameters using ImageJ, Comput. Electron. Agr. 63(2) (2008) 168-182. [79] M.A. Llosent, L.M. Gugliotta, G.R. Meira, Particle size distribution of SBR and NBR latexes by UV-VIS turbidimetry near the Rayleigh region, Rubber Chem. Technol. 69(4) (1996) 696-712. [80] O.Z. Durham, D.V. Chapman, S. Krishnan, D.A. Shipp, Radical mediated ThiolEne emulsion polymerizations, Macromolecules 50(3) (2017) 775-783. [81] C.A. Silebi, J.G. Dosramos, Separation of submicrometer particles by capillary hydrodynamic fractionation (CHDF), J. Colloid Interface Sci. 130(1) (1989) 14- 24. [82] J.G. DosRamos, C.A. Silebi, The determination of particle size distribution of submicrometer particles by capillary hydrodynamic fractionation (CHDF), J. Colloid Interface Sci. 135(1) (1990) 165-177. [83] J.G. Dosramos, C.A. Silebi, An analysis of the separation of submicron particles by capillary hydrodynamic fractionation (CHDF), J. Colloid Interface Sci. 133(2) (1989) 302-320. [84] L.A. Clementi, Z. Artetxe, Z. Aguirreurreta, A. Agirre, J.R. Leiza, L.M. Gugliotta, J. R. Vega, Capillary hydrodynamic fractionation of hydrophobic colloids:Errors in the estimated particle size distribution, Particuology 17(2014) 97-105. [85] T. Provder, J. Texter, Particle Sizing and Characterization, American Chemical Society, Washington, 2004. [86] S.H. Lee, S. Lee, H.W. Ryu, H. Park, Y.S. Kim, J.H. Kim, Synthesis and in situ doping of highly conductive polypyrrole nanocomplexes with binary acids, J. Polym. Sci. Pol. Chem. 52(16) (2014) 2329-2336. [87] Y.H. Choi, W.K. Lee, Effects of agitation in emulsion polymerization of vinyl acetate, ethylene, and N-methylol acrylamide, J. Ind. Eng. Chem. 16(3) (2010) 431-436. [88] J. Zeaiter, J.A. Romagnoli, G.W. Barton, V.G. Gomes, On-line optimal control of particle size distribution in emulsion polymerisation, Comput. Aided. Chem. Eng. 10(2002) 607-612. [89] C.M. Miller, E.D. Sudol, C.A. Silebi, M.S. El-Aasser, Capillary hydrodynamic fractionation (CHDF) as a tool for monitoring the evolution of the particle size distribution during miniemulsion polymerization, J. Colloid Interface Sci. 172(1) (1995) 249-256. [90] K. Tauer, Block copolymers prepared by emulsion polymerization with poly (ethylene oxide)-azo-initiators, Polym. Adv. Technol. 6(7) (1995) 435-440. [91] R. Hu, V.L. Dimonie, M.S. Elaasser, R.A. Pearson, L.H. Sperling, A. Hiltner, S.G. Mylonakis, Interfacial aspects of latex ipns for toughening polycarbonate. 1. Synthesis and characterization, J. Appl. Polym. Sci. 58(2) (1995) 375-384. [92] A.C. Makan, M.J. Spallek, M. du Toit, T. Klein, H. Pasch, Advanced analysis of polymer emulsions:Particle size and particle size distribution by field-flow fractionation and dynamic light scattering, J. Chromatogr. A 1442(2016) 94- 106. [93] S. Podzimek, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation:Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles, John Wiley & Sons Inc, New Jersey, 2011. [94] P. Reschiglian, A. Zattoni, B. Roda, L. Cinque, D. Parisi, A. Roda, F. Dal Piaz, M.H. Moon, B.R. Min, On-line hollow-fiber flow field-flow fractionationelectrospray ionization/time-of-flight mass spectrometry of intact proteins, Anal. Chem. 77(1) (2005) 47-56. [95] M.R. Park, Y.S. Chum, D.Y. Kang, S.K. Yu, S.H. Choi, K.H. Lee, S. Lee, Effect of reaction parameters on size distribution of emulsion-polymerized polystyrene latex beads studied by gravitational flow-flow fractionation (GrFFF), J. Liq. Chromatogr. R. T. 32(7) (2009) 909-922. [96] J. Liu, J.D. Andya, S.J. Shire, A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation, AAPS J. 8(3) (2006) 580-589. [97] P. Ducheyne, K.E. Healy, D.W. Grainger, D.W. Hutmacher, C.J. Kirkpatrick, Comprehensive Biomaterials, Elsevier, Oxford, 2011. [98] S. Han, J. Choi, Y. Yoo, E.C. Jung, S. Lee, Size monitoring in the synthesis of silica nanoparticles using asymmetrical flow field-flow fractionation (AF4), Bull. Korean Chem. Soc. 37(3) (2016) 335-343. [99] G.E.N. Pound-Lana, G.M. Garcia, I.C. Trindade, P. Capelari-Oliveira, T.G. Pontifice, J.M.C. Vilela, M.S. Andrade, B. Nottelet, B.B. Postacchini, V.C.F. Mosqueira, Phthalocyanine photosensitizer in polyethylene glycol-block-poly (lactide-co-benzyl glycidyl ether) nanocarriers:Probing the contribution of aromatic donor-acceptor interactions in polymeric nanospheres, Mater. Sci. Eng. C-Mater. 94(2019) 220-233. [100] C. Schmitt, B. Grassl, G. Lespes, J. Desbrières, V. Pellerin, S. Reynaud, J. Gigault, V.A. Hackley, Saponins:A renewable and biodegradable surfactant from its microwave-assisted extraction to the synthesis of monodisperse lattices, Biomacromolecules 15(3) (2014) 856-862. [101] K.I. Suresh, E. Bartsch, Effect of seed characteristics on morphology development in poly(n-butyl acrylate)-poly(n-butyl methacrylate) coreshell dispersions, J. Appl. Polym. Sci. 127(1) (2013) 208-216. [102] S. Carro, J. Herrera-Ordonez, J. Castillo-Tejas, On the evolution of the rate of polymerization, number and size distribution of particles in styrene emulsion polymerization above CMC, J. Polym. Sci. Pol. Chem. 48(14) (2010) 3152-3160. [103] Y.Q. Xiao, Z.Q. Tan, Y.G. Yin, X.R. Guo, J.W. Xu, B.W. Wang, H.L. Fan, J.F. Liu, Application of hollow fiber flow field-flow fractionation with UV-Vis detection in the rapid characterization and preparation of poly(vinyl acetate) nanoemulsions, Microchem. J. 137(2018) 376-380. [104] S. Lee, C.H. Eum, S. Choi, W. Kim, Synthesis of silica nanoparticles for the manufacture of porous carbon membrane and particle size analysis by sedimentation field-flow fractionation, Bull. Korean Chem. Soc. 37(11) (2016) 1831-1837. [105] R.J. Hunter, Emulsions, latices and dispersions, J. Colloid Interface Sci. 72(1) (1979) 175-176. [106] L.E. Oppenheimer, Interpretation of disk centrifuge data, J. Colloid Interface Sci. 92(2) (1983) 350-357. [107] P.C. Yang, S.P. Armes, Synthesis and characterization of novel polyacidstabilized latexes, Langmuir 28(37) (2012) 13189-13200. [108] L.A. Fielding, O.O. Mykhaylyk, S.P. Armes, P.W. Fowler, V. Mittal, S. Fitzpatrick, Correcting for a density distribution:Particle size analysis of core-shell nanocomposite particles using disk centrifuge photosedimentometry, Langmuir 28(5) (2012) 2536-2544. [109] D. Dupin, S. Fujii, S.P. Armes, P. Reeve, S.M. Baxter, Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization, Langmuir 22(7) (2006) 3381-3387. [110] A. Schmid, S. Fujii, S.P. Armes, Synthesis of micrometer-sized silica-stabilized polystyrene latex particles, Langmuir 21(18) (2005) 8103-8105. [111] M.J. Percy, V. Michailidou, S.P. Armes, C. Perruchot, J.F. Watts, S.J. Greaves, Synthesis of vinyl polymer-silica colloidal nanocomposites via aqueous dispersion polymerization, Langmuir 19(6) (2003) 2072-2079. [112] C.D. Craver, T. Provder, Polymer Characterization:Physical Property, Spectroscopic, and Chromatographic Method, American Chemical Society, Washington, 1990. [113] V. Liotta, C. Georgakis, E.D. Sudol, M.S. El-Aasser, Manipulation of competitive growth for particle size control in emulsion polymerization, Ind. Eng. Chem. Res. 36(8) (1997) 3252-3263. [114] M.J. Park, M.T. Dokucu, F.J. Doyle, Regulation of the emulsion particle size distribution to an optimal trajectory using partial least squares model-based predictive control, Ind. Eng. Chem. Res. 43(23) (2004) 7227-7237. [115] A.M. Alb, R. Farinato, J. Calbick, W.F. Reed, Online monitoring of polymerization reactions in inverse emulsions, Langmuir 22(2) (2006) 831-840. [116] A. Chemtob, B. Kunstler, C. Croutxé-Barghorn, S. Fouchard, Photoinduced miniemulsion polymerization, Colloid Polym. Sci. 288(5) (2010) 579-587. [117] N.H.N. Hadzir, S. Dong, R.P. Kuchel, F.P. Lucien, P.B. Zetterlund, Mechanistic aspects of aqueous heterogeneous radical polymerization of styrene under compressed CO2, Macromol. Chem. Phys. 218(14) (2017) 1700128. [118] C. Houben, G. Nurumbetov, D. Haddleton, A.A. Lapkin, Feasibility of the simultaneous determination of monomer concentrations and particle size in emulsion polymerization using in situ Raman Spectroscopy, Ind. Eng. Chem. Res. 54(51) (2015) 12867-12876. [119] S. Ghasemi, M.T. Darestani, Z. Abdollahi, V.G. Gomes, Online monitoring of emulsion polymerization using electrical impedance spectroscopy, Polym. Int. 64(1) (2015) 66-75. [120] W.K. Silva, D.L. Chicoma, R. Giudici, In-situ real-time monitoring of particle size, polymer, and monomer contents in emulsion polymerization of methyl methacrylate by near infrared spectroscopy, Polym. Eng. Sci. 51(10) (2011) 2024-2034. [121] S. Kozempel, K. Tauer, G. Rother, Aqueous heterophase polymerization of styrene-A study by means of multi-angle laser light scattering, Polymer 46(4) (2005) 1169-1179. [122] E. Frauendorfer, A. Wolf, W.D. Hergeth, Polymerization online monitoring, Chem. Eng. Technol. 33(11) (2010) 1767-1778. [123] A. Zubov, O. Naeem, S.O. Hauger, A. Bouaswaig, F. Gjertsen, P. Singstad, K.D. Hungenberg, J. Kosek, Bringing the on-line control and optimization of semibatch emulsion copolymerization to the pilot plant, Macromol. React. Eng. 11(4) (2017) 1700014. [124] V.G. Gomes, Advanced monitoring and control of multi-monomer system in emulsion polymerization, Macromol. React. Eng. 4(11-12) (2010) 672-681. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||