Polyamide-baghouse dust nanocomposite for removal of methylene blue and metals: Characterization, kinetic, thermodynamic and regeneration
Abdullah A. Basaleh, Muhammad H. Al-Malack, Tawfik A. Saleh
中国化学工程学报. 2021, 39(11):
112-125.
doi:10.1016/j.cjche.2020.08.050
摘要
(
)
PDF (11697KB)
(
)
参考文献 |
相关文章 |
多维度评价
In this research, polyamide modified baghouse dust nanocomposite (PMBHD) was synthesized from steel industry waste using the interfacial polymerization technique. Adsorption capacities of the PMBHD were examined for the uptake of cadmium Cd (II), lead Pb (II), and methylene blue MB from simulated solutions. The effects of different operational factors of the adsorption, including contact time, pH, adsorbent dosage, initial concentration, and temperature, were investigated. The obtained results revealed that the equilibrium data of MB, Pb (II), and Cd (II) were best fitted to Dubinin-Radushkevich, Langmuir, and Freundlich isotherm. Maximum removal uptake was found to be 6.08, 119, and 234 mg·g-1, whereas maximum removal efficiencies of 90%, 99.8%, and 98% were achieved for MB, Pb (II), and Cd (II). Adsorption kinetics of MB and metals well-fitted to the pseudo-second-order kinetic. The characterization results showed the presence of polymeric chain on the surface of the PMBHD. The thermodynamic study revealed that the values of the free energy ΔG for Pb (II) and Cd (II) were found to be negative, which indicates spontaneous, energetic, and favorable adsorption. While for MB removal, positive values of (ΔG) were noticed, which implies that the adsorption was unfavorable. The proposed mechanism for the adsorption of MB and metals on the PMBHD showed that the dominating mechanism is physisorption. The adsorption/desorption results verified the high reusability of the PMBHD for adsorption of MB and metals.