[1] C. Le Quéré, R. Moriarty, R.M. Andrew, J.G. Canadell, S. Sitch, J.I. Korsbakken, P. Friedlingstein, G.P. Peters, R.J. Andres, T.A. Boden, R.A. Houghton, J.I. House, R.F. Keeling, P. Tans, A. Arneth, D.C.E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L.P. Chini, P. Ciais, M. Fader, R.A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A.K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S.K. Lauvset, N. Lefèvre, A. Lenton, I.D. Lima, N. Metzl, F. Millero, D.R. Munro, A. Murata, J.E.M.S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F.F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B.D. Stocker, A.J. Sutton, T. Takahashi, B. Tilbrook, I.T. van der Laan-Luijkx, G.R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, N. Zeng, Global Carbon Budgeet, Earth Syst. Sci. Data 7(2015) (2015) 349-396. [2] E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes, Energ. Environ. Sci. 6(11) (2013) 3112. [3] G.A. Ozin, Throwing new light on the reduction of CO2, Adv. Mater. 27(11) (2015) 1957-1963. [4] M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon:from CO2 to chemicals, materials, and fuels. technological use of CO2, Chem. Rev. 114(2014) 1709-1742. [5] M.D. Porosoff, B. Yan, J.G. Chen, Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons:Challenges and opportunities, Energ. Environ. Sci. 9(1) (2016) 62-73. [6] M. Sheng, N. Jiang, S. Gustafson, B.o. You, D.H. Ess, Y. Sun, A nickel complex with a biscarbene pincer-type ligand shows high electrocatalytic reduction of CO2 over H2O, Dalton T. 44(37) (2015) 16247-16250. [7] J. Wu, Y. Huang, W. Ye, Y. Li, CO2 Reduction:From the Electrochemical to Photochemical Approach, Adv. Sci. 4(2017) 1700194. [8] J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, Chem. Soc. Rev. 43(2) (2014) 631- 675. [9] R.J. Lim, M. Xie, M.A. Sk, J.-M. Lee, A. Fisher, X. Wang, K.H. Lim, A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts, Catal. Today 233(2014) 169-180. [10] S. Hosseini, S. kheawhom, S. Masoudi Soltani, M.K. Aroua, H. Moghaddas, R. Yusoff, Improvement of product selectivity in bicarbonate reduction into formic acid on a tin-based catalyst by integrating nano-diamond particles, Process Saf. Environ. 116(2018) 494-505. [11] A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, A. Sáez, V. Montiel, A. Irabien, Sn nanoparticles on gas diffusion electrodes:Synthesis, characterization and use for continuous CO2 electroreduction to formate, J. CO2 Util. 18(2017) 222-228. [12] C. Zhao, J. Wang, Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts, Chem. Eng. J. 293(2016) 161- 170. [13] R.G. Grim, Z. Huang, M.T. Guarnieri, J.R. Ferrell, L. Tao, J.A. Schaidle, Transforming the carbon economy:Challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization, Energ. Environ. Sci. 13(2020) 472-494. [14] G.K.S. Prakash, F.A. Viva, G.A. Olah, Electrochemical reduction of CO2 over SnNafion® coated electrode for a fuel-cell-like device, J. Power Sources 223(2013) 68-73. [15] Q. Wang, H. Dong, H. Yu, Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte, J. Power Sources 271(2014) 278-284. [16] Q. Wang, H. Dong, H. Yu, Fabrication of a novel tin gas diffusion electrode for electrochemical reduction of carbon dioxide to formic acid, RSC Adv. 4(104) (2014) 59970-59976. [17] E. Irtem, T. Andreu, A. Parra, M.D. Hernández-Alonso, S. García-Rodríguez, J.M. Riesco-García, G. Penelas-Pérez, J.R. Morante, Low-energy formate production from CO2 electroreduction using electrodeposited tin on GDE, J. Mater. Chem. A 4(35) (2016) 13582-13588. [18] R. Zhang, W. Lv, G. Li, L. Lei, Electrochemical reduction of CO2 on SnO2/nitrogen-doped multiwalled carbon nanotubes composites in KHCO3 aqueous solution, Mater. Lett. 141(2015) 63-66. [19] N. Kornienko, Y. Zhao, C.S. Kley, C. Zhu, D. Kim, S. Lin, C.J. Chang, O.M. Yaghi, P. Yang, Metal-organic frameworks for electrocatalytic reduction of carbon dioxide, J. Am. Chem. Soc. 137(44) (2015) 14129-14135. [20] R.L. Dongwei Du, H. Wang, J. Humphreys, S. Tao, Achieving both high selectivity and current density for CO2 reduction to formate on nanoporous tin foam electrocatalysts, ChemistrySelect 1(2016) 1711-1715. [21] Z. Bian, A. Li, R. He, H. Song, X. Chen, J. Zhou, Z. Ma, Metal-organic frameworktemplated porous SnO/C polyhedrons for high-performance lithium-ion batteries, Electrochim. Acta 289(2018) 389-396. [22] J.W. Maina, C. Pozo-Gonzalo, J.A. Schütz, J. Wang, L.F. Dumée, Tuning CO2 conversion product selectivity of metal organic frameworks derived hybrid carbon photoelectrocatalytic reactors, Carbon 148(2019) 80-90. [23] J.W. Maina, J.A. Schütz, L. Grundy, E. Des Ligneris, Z. Yi, L. Kong, C. PozoGonzalo, M. Ionescu, L.F. Dumée, Inorganic nanoparticles/metal organic framework hybrid membrane reactors for efficient photocatalytic conversion of CO2, ACS Appl. Mater. Interfaces 9(40) (2017) 35010-35017. [24] S. Hu, M. Liu, F. Ding, C. Song, G. Zhang, X. Guo, Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins, J. CO2 Util. 15(2016) 89-95. [25] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, Science 323(5915) (2009) 760-764. [26] C. Liang, Z. Li, S. Dai, Mesoporous carbon materials:Synthesis and modification, Angew. Chem. Int. Ed. Engl. 47(20) (2008) 3696-3717. [27] S. Gadipelli, Z.X. Guo, Tuning of ZIF-Derived carbon with high activity, nitrogen functionality, and yield-A case for superior CO2 capture, ChemSusChem 8(12) (2015) 2123-2132. [28] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis, ACS Nano 5(6) (2011) 4350-4358. [29] F. Gai, D. Zhu, Y. Wu, X. Zhao, C. Liang, Z. Liu, Y. Liu, T. Wang, Tailored N-doped porous carbons via a MOF assembly process for high-performance CO2 uptake, Mater. Adv. 2(2) (2021) 692-699. [30] Q. Wang, W. Xia, W. Guo, L.i. An, D. Xia, R. Zou, Functional zeolitic-imidazolateframework-templated porous carbon materials for CO2 capture and enhanced capacitors, Chem. Asian J. 8(8) (2013) 1879-1885. [31] F. Xu, M. Minniti, P. Barone, A. Sindona, A. Bonanno, A. Oliva, Nitrogen doping of single walled carbon nanotubes by low energy N2+ ion implantation, Carbon 46(2008) 1489-1496. [32] Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahighenergy-density Zn-Air batteries, ACS Energy Lett. 3(5) (2018) 1183-1191. [33] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351(6271) (2016) 361-365. [34] K.K. Yoshio Hori, S. Suzuki, Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution, Chem. Lett. (1985) 1695-1698. [35] T.A.F. Koleli, N. Palamut, A.M. Gizir, R. Aydin, C.H. Hamann, Electrochemical reduction of CO2 at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media, J. Appl. Electrochem. 33(2003) 447-450. [36] Y. Chen, M.W. Kanan, Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts, J. Am. Chem. Soc. 134(4) (2012) 1986-1989. [37] F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth:A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity, Angew. Chem. Int. Ed. Engl. 56(2017) 505-509. [38] H. Hu, L. Gui, W. Zhou, J. Sun, J. Xu, Q. Wang, B. He, L. Zhao, Partially reduced Sn/SnO2 porous hollow fiber:A highly selective, efficient and robust electrocatalyst towards carbon dioxide reduction, Electrochim. Acta 285(2018) 70-77. [39] B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen, M. Sunkara, J.M. Spurgeon, Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2 -into-HCOOH conversion, Angew. Chem. Int. Ed. Engl. 56(13) (2017) 3645-3649. [40] F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D.R. MacFarlane, J. Zhang, Towards a better Sn:Efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets, Nano Energy 31(2017) 270-277. [41] D.H. Won, C.H. Choi, J. Chung, M.W. Chung, E.-H. Kim, S.I. Woo, Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2, ChemSusChem 8(18) (2015) 3092-3098. [42] S. Zhang, P. Kang, T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate, J. Am. Chem. Soc. 136(5) (2014) 1734-1737. [43] S. Bashir, S.S. Hossain, S.U. Rahman, S. Ahmed, A.-A. Amir, M.M. Hossain, Electrocatalytic reduction of carbon dioxide on SnO2/MWCNT in aqueous electrolyte solution, J. CO2 Util. 16(2016) 346-353. |