[1] R. Sahu, B.J. Song, J.S. Im, Y.P. Jeon, C.W. Lee, A review of recent advances in catalytic hydrocracking of heavy residues, J. Ind. Eng. Chem. 27(2015) 12-24. [2] M.S. Rana, V. Samano, J. Ancheyta, J.A.I. Diaz, A review of recent advances on process technologies for upgrading of heavy oils and residua, Fuel 86(2007) 1216-1231. [3] T.A. Al-Attas, S.A. Ali, M.H. Zahir, Q.G. Xiong, S.A. Al-Bogami, Z.O. Malaibari, S.A. Razzak, M.M. Hossain, Recent advances in heavy oil upgrading using dispersed catalysts, Energy Fuels 33(2019) 7917-7949. [4] S. Zhang, D. Liu, W. Deng, G. Que, A review of slurry-phase hydrocracking heavy oil technology, Energy Fuels 21(2007) 3057-3062. [5] M.A. Ali, T. Tatsumi, T. Masuda, Development of heavy oil hydrocracking catalysts using amorphous silica-alumina and zeolites as catalyst supports, Appl. Catal. A Gen 233(2002) 77-90. [6] F. Morel, S. Kressmann, V. Harle, S. Kasztelan, Processes and catalysts for hydrocracking of heavy oil and residues, G.F. Froment, B. Delmon, P. Grange, Eds., Hydrotreatment and Hydrocracking of Oil Fractions, Elsevier, Amsterdam (1997) 1-16. [7] J. Martinez, J.L. Sanchez, J. Ancheyta, R.S. Ruiz, A review of process aspects and modeling of ebullated bed reactors for hydrocracking of heavy oils, Catal. Rev. Sci. Eng. 52(2010) 60-105. [8] G. Bellussi, G. Rispoli, A. Landoni, R. Millini, D. Molinari, E. Montanari, D. Moscotti, P. Pollesel, Hydroconversion of heavy residues in slurry reactors:developments and perspectives, J. Catal. 308(2013) 189-200. [9] C.J. Calderon, J. Ancheyta, Modeling of slurry-phase reactors for hydrocracking of heavy oils, Energy Fuels 30(2016) 2525-2543. [10] C. Li, T.F. Yang, W.N. Deng, H.H. Zhang, M. Cui, Effects of Iron (III) dodecylbenzenesulfonate on the slurry-phase hydrocracking of venezuela fuel oil with an oil-soluble Mo catalyst, Energy Fuels 30(2016) 4710-4716. [11] T.A. Al-Attas, M.H. Zahir, S.A. Ali, S.A. Al-Bogami, Z. Malaibari, S.A. Razzak, M.M. Hossain, Novel (Co-, Ni)-p-tert-butylcalix 4 arenes as dispersed catalysts for heavy oil upgrading:synthesis, characterization, and performance evaluation, Energy Fuels 33(2019) 561-573. [12] N. Panariti, A. Del Bianco, G. Del Piero, M. Marchionna, Petroleum residue upgrading with dispersed catalysts Part 1. Catalysts activity and selectivity, Appl. Catal. A Gen. 204(2000) 203-213. [13] B. Liu, K.D. Zhao, Y.M. Chai, Y.P. Li, D. Liu, Y.Q. Liu, C.G. Liu, Slurry phase hydrocracking of vacuum residue in the presence of presulfided oil-soluble MoS2 catalyst, Fuel 246(2019) 133-140. [14] Z.X. Chen, Y.N. Cao, Y.D. Ma, C.T. Au, L.L. Jiang, X.J. Bao, Synthesis, characterization, and catalytic performance of aminomethylphosphonic molybdenum catalysts for slurry-phase hydrocracking, Ind. Eng. Chem. Res. 58(2019) 2689-2696. [15] K.H. Kang, N.T. Nguyen, P.W. Seo, H. Seo, G.T. Kim, N. Kang, C.W. Lee, S.J. Han, M.C. Chung, S. Park, Slurry-phase hydrocracking of heavy oil over Mo precursors:Effect of triphenylphosphine ligands, J. Catal. 384(2020) 106-121. [16] A.H. Al-Rashidy, T.A. Al-Attas, S.A. Ali, S.A. Al-Bogami, S.A. Razzak, M.M. Hossain, Hydrocracking of LVGO using dispersed catalysts derived from soluble precursors:Performance evaluation and kinetics, Ind. Eng. Chem. Res. 58(2019) 14709-14718. [17] J. Sanchez, A. Moreno, F. Mondragon, K.J. Smith, Morphological and structural properties of MoS2 and MoS2-amorphous silica-alumina dispersed catalysts for slurry-phase hydroconversion, Energy Fuels 32(2018) 7066-7077. [18] E.A.S. Bdwi, S.A. Ali, M.R. Quddus, S.A. Al-Bogami, S.A. Razzak, M.M. Hossain, Kinetics of promotional effects of oil-soluble dispersed metal (Mo Co, and Fe) catalysts on slurry phase hydrocracking of vacuum gas oil, Energy Fuels 31(2017) 3132-3142. [19] T.A. Al-Attas, M.H. Zahir, S.A. Ali, S.A. Al-Bogami, Z. Malaibari, S.A. Razzak, M.M. Hossain, Kinetics of the synergy effects in heavy oil upgrading using novel Nip-tert-butylcalix [4]arene as a dispersed catalyst with a supported catalyst, Fuel Process. Technol. 185(2019) 158-168. [20] L. Di Felice, N. Catherin, L. Piccolo, D. Laurenti, E. Blanco, E. Leclerc, C. Geantet, V. Calemma, Decalin ring opening over NiWS/SiO2-Al2O3 catalysts in the presence of H2S, Appl. Catal. A Gen 512(2016) 43-51. [21] Y.J. Zhang, Y.Y. Zhan, C.Q. Chen, Y.N. Cao, X.Y. Lin, Q. Zheng, Highly efficient Au/ZrO2 catalysts for low-temperature water-gas shift reaction:Effect of precalcination temperature of ZrO2, Int. J. Hydrogen Energy 37(2012) 12292- 12300. [22] Y.Y. Zhang, Y. Zhao, T. Otroshchenko, S.L. Han, H. Lund, U. Rodemerck, D. Linke, H.J. Jiao, G.Y. Jiang, E.V. Kondratenko, The effect of phase composition and crystallite size on activity and selectivity of ZrO2 in non-oxidative propane dehydrogenation, J. Catal. 371(2019) 313-324. [23] W. Zhou, E.I. Ross-Medgaarden, W.V. Knowles, M.S. Wong, I.E. Wachs, C.J. Kiely, Identification of active Zr-WOx clusters on a ZrO2 support for solid acid catalysts, Nat. Chem. 1(2009) 722-728. [24] Y.Y. Zhang, Y. Zhao, T. Otroshchenko, H. Lund, M.M. Pohl, U. Rodemerck, D. Linke, H.J. Jiao, G.Y. Jiang, E.V. Kondratenko, Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C-H bond activation, Nat. Commun. 9(2018) 3794. [25] A. Corma, V. Fornes, M.I. Juanrajadell, J.M.L. Nieto, Influence of preparation conditions on the structure and catalytic properties of SO42-/ZrO2 superacid catalysts, Appl. Catal. A Gen. 116(1994) 151-163. [26] B. Fu, L. Gao, L. Niu, R. Wei, G. Xiao, Biodiesel from waste cooking oil via heterogeneous superacid catalyst SO42-/ZrO2, Energy Fuels 23(2009) 569-572. [27] J. Sanchez, A. Moreno, F. Mondragon, K.J. Smith, Bifunctional MoS2-silicaalumina catalysts for slurry phase phenanthrene-decalin hydroconversion, Energy Fuels 32(2018) 10910-10922. [28] S. Klein, S. Thorimbert, W.F. Maier, Amorphous microporous titania-silica mixed oxides:Preparation, characterization, and catalytic redox properties, J. Catal. 163(1996) 476-488. [29] D.C.M. Dutoit, M. Schneider, A. Baiker, Titania-silica mixed oxides. 1. Influence of sol-gel and dryding conditions on structural-properties, J. Catal. 153(1995) 165-176. [30] V. Degirmenci, O.F. Erdem, O. Ergun, A. Yilmaz, D. Michel, D. Uner, Synthesis and NMR characterization of titanium and zirconium oxides incorporated in SBA-15, Top. Catal. 49(2008) 204-208. [31] A.A. Gabrienko, I.G. Danilova, S.S. Arzumanov, L.V. Pirutko, D. Freude, A.G. Stepanov, Direct measurement of zeolite Bronsted acidity by FTIR spectroscopy:Solid-state 1H MAS NMR approach for reliable determination of the integrated molar absorption coefficients, J. Phys. Chem. C 122(2018) 25386-25395. [32] D.J. Rosenberg, F. Coloma, J.A. Anderson, Modification of the acid properties of silica-zirconia aerogels by in situ and ex situ sulfation, J. Catal. 210(2002) 218- 228. [33] P. Salas, J.A. Wang, H. Armendariz, C. Angeles-Chavez, L.F. Chen, Effect of the Si/Zr molar ratio on the synthesis of Zr-based mesoporous molecular sieves, Mater. Chem. Phys. 114(2009) 139-144. [34] S. Biz, M.G. White, Syntheses of aluminosilicate mesostructures with high aluminum content, J. Phys. Chem. B 103(1999) 8432-8442. [35] S.W. Choi, W.G. Kim, J.S. So, J.S. Moore, Y.J. Liu, R.S. Dixit, J.G. Pendergast, C. Sievers, D.S. Sholl, S. Nair, C.W. Jones, Propane dehydrogenation catalyzed by gallosilicate MFI zeolites with perturbed acidity, J. Catal. 345(2017) 113-123. [36] P.A. Kots, A.V. Zabilska, I.I. Vanova, Selective self-condensation of butanal over Zr-BEA zeolites, ChemCatChem 12(2020) 248-258. [37] J. Penzien, A. Abraham, J.A. van Bokhoven, A. Jentys, T.E. Muller, C. Sievers, J.A. Lercher, Generation and characterization of well-defined Zn2+ Lewis acid sites in ion exchanged zeolite BEA, J. Phys. Chem. B 108(2004) 4116-4126. [38] S. Tamiyakul, W. Ubolcharoen, D.N. Tungasmita, S. Jongpatiwut, Conversion of glycerol to aromatic hydrocarbons over Zn-promoted HZSM-5 catalysts, Catal. Today 256(2015) 325-335. [39] S.J. You, E.D. Park, Effects of dealumination and desilication of H-ZSM-5 on xylose dehydration, Micro. Meso. Mater. 186(2014) 121-129. [40] X.L. Zhu, L.L. Lobban, R.G. Mallinson, D.E. Resasco, Tailoring the mesopore structure of HZSM-5 to control product distribution in the conversion of propanal, J. Catal. 271(2010) 88-98. |