[1] H.T. Guo, W.H. Qiao, J. Yang, H.M. Li, Z.S. Li, Synthesis of hexylnaphthalene, characterization of the products and the reaction mechanism, Petroleum Sci. Technol. 22(5-6) (2004) 709-718. [2] H.T. Guo, Y. Liang, W.H. Qiao, G.R. Wang, Z.S. Li, A study on alkylation of naphthalene with long chain olefins over zeolite catalyst, Stud. Surf. Sci. Catal. 142(2002) 999-1006. [3] M.D. Kadgaonkar, S.C. Laha, R.K. Pandey, P. Kumar, S.P. Mirajkar, R. Kumar, Cerium-containing MCM-41 materials as selective acylation and alkylation catalysts, Catal. Today 97(4) (2004) 225-231. [4] I.I. Ivanova, A.S. Kuznetsov, E.E. Knyazeva, F. Fajula, F. Thibault-Starzyk, C. Fernandez, J.P. Gilson, Design of hierarchically structured catalysts by mordenites recrystallization:Application in naphthalene alkylation, Catal. Today 168(1) (2011) 133-139. [5] L. Li, X.R. Zhao, C. Chen, H. Xu, L. Liu, J.X. Dong, Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil, ChemistrySelect 4(18) (2019) 5284-5290. [6] J.L.G. de Almeida, M. Dufaux, Y.B. Taarit, C. Naccache, Linear alkylbenzene, J. Am. Oil Chem. Soc. 71(7) (1994) 675-694. [7] A.M. Buchbinder, Regeneration of an acidic catalyst by alkylation of aromatic compounds, US Pat. 20150273460(2015). [8] E.T. Hessell, R.A. Abramshe, Alkylated naphthalenes as high-performance synthetic fluids, J. Synth. Lubr. 20(2) (2003) 109-122. [9] M.J. Hourani, T. Hessell, R.A. Abramshe, J. Liang, Alkylated naphthalenes as high-performance synthetic lubricating fluids, Tribol. Trans. 50(1) (2007) 82- 87. [10] G.F. Mekhtieva, S.M. Musaev, Alkyl naphthalenes as lubricant and coolant process materials, Chem. Technol. Fuels Oils 41(4) (2005) 296-299. [11] P.S. Belov, E.N. Grigor'Eva, E.M. Nikonorov, N.K. Volobuev, L.N. Sosulina, Alkylnaphthalenes as components of high-temperature lubricants, Chem. Technol. Fuels Oils 20(4) (1984) 208-210. [12] J.M. Hogg, L.C. Brown, K. Matuszek, P. Latos, A. Chrobok, M. Swadz ′ ba-Kwas ′ny, Liquid coordination complexes of Lewis acidic metal chlorides:Lewis acidity and insights into speciation, Dalton Trans. 46(35) (2017) 11561-11574. [13] A.P. Abbott, J.C. Barron, K.S. Ryder, D. Wilson, Eutectic-based ionic liquids with metal-containing anions and cations, Chemistry 13(22) (2007) 6495-6501. [14] H.M. Abood, A.P. Abbott, A.D. Ballantyne, K.S. Ryder, Do all ionic liquids need organic cations? Characterisation of[AlCl2·nAmide]+ AlCl4(-) and comparison with imidazolium based systems, Chem. Commun. (Camb.) 47(12) (2011) 3523-3525. [15] A.P. Abbott, R.C. Harris, Y.T. Hsieh, K.S. Ryder, I.W. Sun, Aluminium electrodeposition under ambient conditions, Phys. Chem. Chem. Phys. 16(28) (2014) 14675-14681. [16] A.G. Suárez, AlCl3-DMA reagent in the regioselective solvent free FriedelCrafts acylation reaction of benzodioxin derivatives, Tetrahedron Lett. 40(18) (1999) 3523-3526. [17] S. Yous, J.H. Poupaert, I. Lesieur, P. Depreux, D. Lesieur, ChemInform abstract:AlCl3-DMF reagent in the Friedel-Crafts reaction. Application to the acylation reaction of 2(3H)-benzothiazolones, ChemInform 25(33) (1994). https://doi. org/10.1002/chin.199433102. [18] L. Messaoud, Y. Wassila, S. Khemissi, A. Yasmina, C. Hanane, Synthesis of some novel benzoxazolinonylcarboxamides as potential anti-inflammatory agents, J. Chem. Res. 38(6) (2014) 331-333. [19] J.M. Hogg, F. Coleman, A. Ferrer-Ugalde, M.P. Atkins, M. Swadźba-Kwaśny, Liquid coordination complexes:A new class of Lewis acids as safer alternatives to BF3 in synthesis of polyalphaolefins, Green Chem. 17(3) (2015) 1831-1841. [20] J.H. Shen, F.M. Wang, T.L. Wang, H.C. Li, G. Wang, X.B. Zhang, Sulfination of acetanilide using liquid coordination complexes as dual catalyst and solvent, Mol. Catal. 462(2019) 56-60. [21] P.C. Hu, J.W. Zheng, W. Jiang, L.J. Zhong, S.F. Zhou, Isomerization of n-pentane catalyzed by amide-AlCl3-based ionic liquid analogs with various additives, Chin. J. Chem. Eng. 28(1) (2020) 152-157. [22] K. Matuszek, A. Chrobok, J.M. Hogg, F. Coleman, M. Swadźba-Kwaśny, FriedelCrafts alkylation catalysed by GaCl3-based liquid coordination complexes, Green Chem. 17(8) (2015) 4255-4262. [23] P.C. Hu, Y.D. Wang, X.H. Meng, R. Zhang, H.Y. Liu, C.M. Xu, Z.C. Liu, Isobutane alkylation with 2-butene catalyzed by amide-AlCl3-based ionic liquid analogues, Fuel 189(2017) 203-209. [24] Y.L. Yang, Y. Kou, Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe, Chem. Commun. Camb. 2(2004) 226-227. [25] F. Coleman, G. Srinivasan, M. Swadźba-Kwaśny, Liquid coordination complexes formed by the heterolytic cleavage of metal halides, Angew. Chem. Int. Ed. Engl. 52(48) (2013) 12582-12586. [26] R. Kore, P. Berton, S.P. Kelley, P. Aduri, S.S. Katti, R.D. Rogers, Group IIIA halometallate ionic liquids:Speciation and applications in catalysis, ACS Catal. 7(10) (2017) 7014-7028. [27] P.C. Hu, R. Zhang, X.H. Meng, H.Y. Liu, C.M. Xu, Z.C. Liu, Structural and spectroscopic characterizations of amide-AlCl3-based ionic liquid analogues, Inorg. Chem. 55(5) (2016) 2374-2380. [28] M. Malik, K.L. Ng. B, G. Azimi, Physicochemical characterization of AlCl3-urea ionic liquid analogs:Speciation, conductivity, and electrochemical stability, Electrochim. Acta. 354(2020) 136708. [29] G.P. Qi, F. Jiang, X.W. Sun, S.Q. Zhao, Alkylation mechanism of benzene with 1- dodecene catalyzed by Et3NHCl-AlCl3, Ence China Chem. 53(2010) 1102-1107. |