[1] H.Z. Liu, Ammonia synthesis catalyst 100 years:Practice, enlightenment and challenge, Chin. J. Catal. 35 (10) (2014) 1619-1640 [2] J.Y. Zheng, L. Jiang, Y.H. Lyu, S.P. Jian, S.Y. Wang, Green synthesis of nitrogen-to-ammonia fixation:Past, present, and future, Energy Environ. Mater. (2021) eem2.12192 [3] Q.R. Wang, J.P. Guo, P. Chen, Recent progress towards mild-condition ammonia synthesis, J. Energy Chem. 36 (2019) 25-36 [4] C.L. Mao, L.H. Yu, J. Li, J.C. Zhao, L.Z. Zhang, Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx, Appl. Catal. B Environ. 224 (2018) 612-620 [5] F.F. Li, F. Mocci, X.P. Zhang, X.Y. Ji, A. Laaksonen, Ionic liquids for CO2 electrochemical reduction, Chin. J. Chem. Eng. 31 (2021) 75-93 [6] Y.L. Zhou, J.J. Wang, L.L. Liang, Q.J. Sai, J. Ni, C.T. Au, X.Y. Lin, X.Y. Wang, Y. Zheng, L.R. Zheng, L.L. Jiang, Unraveling the size-dependent effect of Ru-based catalysts on Ammonia synthesis at mild conditions, J. Catal. 404 (2021) 501-511 [7] J. Sehested, C.J.H. Jacobsen, E. Törnqvist, S. Rokni, P. Stoltze, Ammonia synthesis over a multipromoted iron catalyst:Extended set of activity measurements, microkinetic model, and hydrogen inhibition, J. Catal. 188 (1) (1999) 83-89 [8] C.G. Pan, Y. Li, W. Jiang, H.Z. Liu, Effects of reaction conditions on performance of Ru catalyst and iron catalyst for ammonia synthesis, Chin. J. Chem. Eng. 19 (2) (2011) 273-277 [9] C.J.H. Jacobsen, S. Dahl, P.L. Hansen, E. Törnqvist, L. Jensen, H. Topsøe, D.V. Prip, P.B. Møenshaug, I. Chorkendorff, Structure sensitivity of supported ruthenium catalysts for ammonia synthesis, J. Mol. Catal. A Chem. 163 (1-2) (2000) 19-26 [10] O. Hinrichsen, F. Rosowski, A. Hornung, M. Muhler, G. Ertl, The kinetics of ammonia synthesis over Ru-based catalysts:1. the dissociative chemisorption and associative desorption of N2, J. Catal. 165 (1) (1997) 33-44 [11] S. Dahl, A. Logadottir, C.J.H. Jacobsen, J.K. Nørskov, Electronic factors in catalysis:The volcano curve and the effect of promotion in catalytic ammonia synthesis, Appl. Catal. A Gen. 222 (1-2) (2001) 19-29 [12] J.C. Liu, X.L. Ma, Y. Li, Y.G. Wang, H. Xiao, J. Li, Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism, Nat. Commun. 9 (2018) 1610 [13] J.W. Zheng, F.L. Liao, S. Wu, G. Jones, T.Y. Chen, J. Fellowes, T. Sudmeier, I.J. McPherson, I. Wilkinson, S.C.E. Tsang, Efficient non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low pressure, Angew. Chem. Int. Ed. 58 (48) (2019) 17335-17341 [14] X.L. Ma, J.C. Liu, H. Xiao, J. Li, Surface single-cluster catalyst for N2-to-NH3 thermal conversion, J. Am. Chem. Soc. 140 (1) (2018) 46-49 [15] C.D. Zeinalipour-Yazdi, J.S.J. Hargreaves, C.R.A. Catlow, Low-T mechanisms of ammonia synthesis on Co3Mo3N, J. Phys. Chem. C 122 (11) (2018) 6078-6082 [16] Y.L. Zhou, C.Y. Wang, X.B. Peng, T.H. Zhang, X.Y. Wang, Y.F. Jiang, H.F. Qi, L.R. Zheng, J.X. Lin, L.L. Jiang, Boosting efficient ammonia synthesis over atomically dispersed co-based catalyst via the modulation of geometric and electronic structures, CCS Chem. (2021) 1881-1892 [17] K. Honkala, A. Hellman, I.N. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C.H. Christensen, J.K. Nørskov, Ammonia synthesis from first-principles calculations, Science 307 (5709) (2005) 555-558 [18] J. Ding, L.Z. Wang, P. Wu, A. Li, W. Li, C. Stampfl, X.Z. Liao, B.S. Haynes, X.D. Han, J. Huang, Confined Ru nanocatalysts on surface to enhance ammonia synthesis:An in situ ETEM study, ChemCatChem 13 (2) (2021) 534-538 [19] Y. Pan, R. Lin, Y.J. Chen, S.J. Liu, W. Zhu, X. Cao, W.X. Chen, K.L. Wu, W.C. Cheong, Y. Wang, L.R. Zheng, J. Luo, Y. Lin, Y.Q. Liu, C.G. Liu, J. Li, Q. Lu, X. Chen, D.S. Wang, Q. Peng, C. Chen, Y.D. Li, Design of single-atom co-N5 catalytic site:A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability, J. Am. Chem. Soc. 140 (12) (2018) 4218-4221 [20] L.L. Cao, Q.Q. Luo, W. Liu, Y. Lin, X.K. Liu, Y.J. Cao, W. Zhang, Y.E. Wu, J.L. Yang, T. Yao, S.Q. Wei, Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution, Nat. Catal. 2 (2) (2019) 134-141 [21] C.Z. Zhu, Q.R. Shi, B.Z. Xu, S.F. Fu, G. Wan, C. Yang, S.Y. Yao, J.H. Song, H. Zhou, D. Du, S.P. Beckman, D. Su, Y.H. Lin, Hierarchically porous M-N-C (M=co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance, Adv. Energy Mater. 8 (29) (2018) 1801956 [22] X.Y. Wang, X.B. Peng, H.Y. Ran, B.Y. Lin, J. Ni, J.X. Lin, L.L. Jiang, Influence of Ru substitution on the properties of LaCoO3 catalysts for ammonia synthesis:XAFS and XPS studies, Ind. Eng. Chem. Res. 57 (51) (2018) 17375-17383 [23] S. Wu, Y.K. Peng, T.Y. Chen, J.Y. Mo, A. Large, I. McPherson, H.L. Chou, I. Wilkinson, F. Venturini, D. Grinter, P. Ferrer Escorihuela, G. Held, S.C.E. Tsang, Removal of hydrogen poisoning by electrostatically polar MgO support for low-pressure NH3 synthesis at a high rate over the Ru catalyst, ACS Catal. 10 (10) (2020) 5614-5622 [24] W. Li, S. Wang, J.P. Li, Highly effective Ru/BaCeO3 catalysts on supports with strong basic sites for ammonia synthesis, Chem. Asian J. (2019) asia.201900618 [25] Y. Ogura, K. Sato, S.I. Miyahara, Y. Kawano, T. Toriyama, T. Yamamoto, S. Matsumura, S. Hosokawa, K. Nagaoka, Efficient ammonia synthesis over a Ru/La0.5Ce0.5O1.75catalyst pre-reduced at high temperature, Chem. Sci. 9 (8) (2018) 2230-2237 [26] X.Y. Wang, L.L. Li, Z.P. Fang, Y.F. Zhang, J. Ni, B.Y. Lin, L.R. Zheng, C.T. Au, L.L. Jiang, Atomically dispersed Ru catalyst for low-temperature nitrogen activation to ammonia via an associative mechanism, ACS Catal. 10 (16) (2020) 9504-9514 [27] J.Z. Qiu, J.B. Hu, J.G. Lan, L.F. Wang, G.Y. Fu, R.J. Xiao, B.H. Ge, J.X. Jiang, Pure siliceous zeolite-supported Ru single-atom active sites for ammonia synthesis, Chem. Mater. 31 (22) (2019) 9413-9421 [28] A.L. Garden, E. Skúlason, The mechanism of industrial ammonia synthesis revisited:Calculations of the role of the associative mechanism, J. Phys. Chem. C 119 (47) (2015) 26554-26559 [29] L.L. Li, Y.F. Jiang, T.H. Zhang, H.F. Cai, Y.L. Zhou, B.Y. Lin, X.Y. Lin, Y. Zheng, L.R. Zheng, X.Y. Wang, C.Q. Xu, C.T. Au, L.L. Jiang, J. Li, Size sensitivity of supported Ru catalysts for ammonia synthesis:From nanoparticles to subnanometric clusters and atomic clusters, Chem (2021) [30] P.J. Hill, L.R. Doyle, A.D. Crawford, W.K. Myers, A.E. Ashley, Selective catalytic reduction of N2 to N2H4 by a simple Fe complex, J. Am. Chem. Soc. 138 (41) (2016) 13521-13524 [31] W. Peng, M. Luo, X.D. Xu, K. Jiang, M. Peng, D.C. Chen, T.S. Chan, Y.W. Tan, Nitrogen fixation:Spontaneous atomic ruthenium doping in Mo2 CT X MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction (adv. energy mater. 25/2020), Adv. Energy Mater. 10 (25) (2020) 2070110 [32] X.B. Peng, H.X. Liu, Y.Y. Zhang, Z.Q. Huang, L.L. Yang, Y.F. Jiang, X.Y. Wang, L.R. Zheng, C.R. Chang, C.T. Au, L.L. Jiang, J. Li, Highly efficient ammonia synthesis at low temperature over a Ru-Co catalyst with dual atomically dispersed active centers, Chem. Sci. 12 (20) (2021) 7125-7137 [33] J. Demaison, F. Hegelund, H. Bürger, Experimental and ab initio equilibrium structure of trans-diazene HNNH, J. Mol. Struct. 413-414 (1997) 447-456 [34] L.L. Li, T.H. Zhang, J.H. Cai, H.F. Cai, J. Ni, B.Y. Lin, J.X. Lin, X.Y. Wang, L.R. Zheng, C.T. Au, L.L. Jiang, Operando spectroscopic and isotopic-label-directed observation of LaN-promoted Ru/ZrH2 catalyst for ammonia synthesis via associative and chemical looping route, J. Catal. 389 (2020) 218-228 |