Progress of vanadium phosphorous oxide catalyst for n-butane selective oxidation
Muhammad Faizan, Yingwei Li, Ruirui Zhang, Xingsheng Wang, Piao Song, Ruixia Liu
中国化学工程学报. 2022, 43(3):
297-315.
doi:10.1016/j.cjche.2021.10.026
摘要
(
)
PDF (4245KB)
(
)
参考文献 |
相关文章 |
多维度评价
The utilization of lighter alkanes into useful chemical products is essential for modern chemistry and reducing the CO2 emission. Particularly, n-butane has gained special attention across the globe due to the abundant production of maleic anhydride (MA). Vanadium phosphorous oxide (VPO) is the most effective catalyst for selective oxidation of n-butane to MA so far. Interestingly, the VPO complex exists in more or less fifteen different structures, each one having distinct phase composition and exclusive surface morphology and physiochemical properties such as valence state, lattice oxygen, acidity etc., which relies on precursor preparation method and the activation conditions of catalysts. The catalytic performance of VPO catalyst is improved by adding different promoters or co-catalyst such as various metals dopants, or either introducing template or structural-directing agents. Meanwhile, new preparation strategies such as electrospinning, ball milling, hydrothermal, barothermal, ultrasound, microwave irradiation, calcination, sol–gel method and solvothermal synthesis are also employed for introducing improvement in catalytic performance. Research in above-mentioned different aspects will be ascribed in current review in addition to summarizing overall catalysis activity and final yield. To analyze the performance of the catalytic precursor, the reaction mechanism and reaction kinetics both are discussed in this review to help clarify the key issues such as strong exothermic reaction, phosphorus supplement, water supplement, deactivation, and air/n-butane pretreatment etc. related to the various industrial applications of VPO.