[1] G. Centi, Smart catalytic materials for energy transition, SmartMat 1 (1) (2020):e1005. [2] S.L. Chu, X. Li, A.W. Robertson, Z.Y. Sun, Electrocatalytic CO2 reduction to ethylene over CeO2-supported Cu nanoparticles:Effect of exposed facets of CeO2, Acta Phys. Chimica Sin. (2020) 2009023-0 [3] X.L. Teng, X.T. Sun, L. Guan, H. Hu, M.B. Wu, Self-supported transition metal oxide electrodes for electrochemical energy storage, Tungsten 2 (4) (2020) 337-361 [4] H.C. Tao, Q. Fan, T. Ma, S.Z. Liu, H. Gysling, J. Texter, F. Guo, Z.Y. Sun, Two-dimensional materials for energy conversion and storage, Prog. Mater. Sci. 111 (2020) 100637 [5] W. Lei, J.L. Xiao, H.P. Liu, Q.L. Jia, H.J. Zhang, Tungsten disulfide:Synthesis and applications in electrochemical energy storage and conversion, Tungsten 2 (3) (2020) 217-239 [6] D.X. Yang, Q.G. Zhu, B.X. Han, Electroreduction of CO2 in ionic liquid-based electrolytes, Innov. 1 (1) (2020) 100016 [7] Y.C. Qin, F.Q. Wang, X.M. Wang, M.W. Wang, W.L. Zhang, W.K. An, X.P. Wang, Y.L. Ren, X. Zheng, D.C. Lv, A. Ahmad, Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion, Rare Met. 40 (9) (2021) 2354-2368 [8] Y.H. Wang, W.J. Jiang, W. Yao, Z.L. Liu, Z. Liu, Y. Yang, L.Z. Gao, Advances in electrochemical reduction of carbon dioxide to formate over bismuth-based catalysts, Rare Met. 40 (9) (2021) 2327-2353 [9] Q. Zhang, X.L. Shao, J. Yi, Y.Y. Liu, J.J. Zhang, An experimental study of electroreduction of CO2 to HCOOH on SnO2/C in presence of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) and anions (HCO3-, Cl-, Br- and I-), Chin. J. Chem. Eng. 28 (10) (2020) 2549-2554 [10] N. Wang, R.K. Miao, G. Lee, A. Vomiero, D. Sinton, A.H. Ip, H.Y. Liang, E.H. Sargent, Suppressing the liquid product crossover in electrochemical CO2 reduction, SmartMat 2 (1) (2021) 12-16 [11] Y. Yang, Y. Zhang, J.S. Hu, L.J. Wan, Progress in the mechanisms and materials for CO2 electroreduction toward C2+ products, ACTA Phys.-CHIMICA SINICA 36 (1) (2019) 1906085 [12] Y.N. Gao, S.Z. LIU, Z.Q. ZHAO, H.C. Tao, Z.Y. Sun, Heterogeneous catalysis of CO2 hydrogenation to C2+ products, ACTA Phys.-CHIMICA SINICA 34 (8) (2018) 858-872 [13] Z.Y. Sun, N. Talreja, H.C. Tao, J. Texter, M. Muhler, J. Strunk, J.F. Chen, Catalysis of carbon dioxide photoreduction on nanosheets:Fundamentals and challenges, Angew. Chem. Int. Ed. 57 (26) (2018) 7610-7627 [14] M. Jia, Q. Fan, S. Liu, J. Qiu and Z. Sun, Single-atom catalysis for electrochemical CO2 reduction, Curr. Opin. Green Sust. 16 (2019) 1-6 [15] T. Ma, Q. Fan, H.C. Tao, Z.S. Han, M.W. Jia, Y.N. Gao, W.J. Ma, Z.Y. Sun, Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts:Current status and future challenges, Nanotechnology 28 (47) (2017) 472001 [16] C.H. Yang, F. Nosheen, Z.C. Zhang, Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction, Rare Met. 40 (6) (2021) 1412-1430 [17] Y. Zhou, N. Han, Y.G. Li, Recent progress on Pd-based nanomaterials for electrochemical CO2 reduction, Acta Phys Chim Sin (2020) 2001041-0 [18] P.P. Yang, L.L. Li, Z.J. Zhao, J.L. Gong, Reveal the nature of particle size effect for CO2 reduction over Pd and Au, Chin. J. Catal. 42 (5) (2021) 817-823 [19] X.B. Zhu, X. Qu, X.S. Li, J.L. Liu, J.H. Liu, B. Zhu, C. Shi, Selective reduction of carbon dioxide to carbon monoxide over Au/CeO2 catalyst and identification of reaction intermediate, Chin. J. Catal. 37 (12) (2016) 2053-2058 [20] L. Liu, N. Tian, L. Huang, Y.H. Hong, A.Y. Xie, F.Y. Zhang, C. Xiao, Z.Y. Zhou, S.G. Sun, Influence of transition metal modification of oxide-derived Cu electrodes in electroreduction of CO2, Chin. J. Catal. 37 (7) (2016) 1070-1075 [21] C.C. Yan, L. Lin, G.X. Wang, X.H. Bao, Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction, Chin. J. Catal. 40 (1) (2019) 23-37 [22] H.C. Tao, X.F. Sun, S. Back, Z.S. Han, Q.G. Zhu, A.W. Robertson, T. Ma, Q. Fan, B.X. Han, Y. Jung, Z.Y. Sun, Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO, Chem Sci 9 (2) (2018) 483-487 [23] L. Hao, Q. Xia, Q. Zhang, J. Masa and Z. Sun, Improving the catalytic performance of MOFs for CO2 conversion:Strategies and perspectives, Chin. J. Catal. 42 (2021) 1903-1920 [24] L. Wang, X. Li, L. Hao, S. Hong, A. W. Robertson and Z. Sun, Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene, Chin. J. Catal. (2021), accepted [25] F. Li, G.H. Gu, C. Choi, P. Kolla, S. Hong, T.S. Wu, Y.L. Soo, J. Masa, S. Mukerjee, Y. Jung, J.S. Qiu, Z.Y. Sun, Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2, Appl. Catal. B:Environ. 277 (2020) 119241 [26] X.H. Chen, Q. Wei, J.D. Hong, R. Xu, T.H. Zhou, Bifunctional metal:Organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange, Rare Met. 38 (5) (2019) 413-419 [27] H.B. Aiyappa, J. Masa, C. Andronescu, M. Muhler, R.A. Fischer, W. Schuhmann, MOFs for electrocatalysis:From serendipity to design strategies, Small Methods 3 (8) (2019) 1800415 [28] C.S. Diercks, Y.Z. Liu, K.E. Cordova, O.M. Yaghi, The role of reticular chemistry in the design of CO2 reduction catalysts, Nat Mater 17 (4) (2018) 301-307 [29] A.A. Lysova, D.G. Samsonenko, D.N. Dybtsev, V.P. Fedin, Cadmium(ii) terephthalates based on trinuclear units {Cd3(bdc)3}:Control of coordination structure dimensionality and luminescence properties, Russ. Chem. Bull. 66 (9) (2017) 1580-1588 [30] A.D. Burrows, K. Cassar, T. Düren, R.M. Friend, M.F. Mahon, S.P. Rigby, T.L. Savarese, Syntheses, structures and properties of cadmium benzenedicarboxylate metal-organic frameworks, Dalton Trans (18) (2008) 2465-2474 [31] J.H. Chen, X. Sun, L.J. Lin, X.F. Dong, Y.S. He, Adsorption removal of o-nitrophenol and p-nitrophenol from wastewater by metal-organic framework Cr-BDC, Chin. J. Chem. Eng. 25 (6) (2017) 775-781 [32] X.L. Zhou, J.C. Dong, Y.H. Zhu, L.M. Liu, Y. Jiao, H. Li, Y. Han, K. Davey, Q. Xu, Y. Zheng, S.Z. Qiao, Molecular scalpel to chemically cleave metal-organic frameworks for induced phase transition, J Am Chem Soc 143 (17) (2021) 6681-6690 [33] Z. Tavakoli, Catalytic CO2 fixation over a high-throughput synthesized copper terephthalate metal-organic framework, J. CO2 Util. 41 (2020) 101288 [34] S. Beg, N.A.S. Al-Areqi, S. Haneef, Study of phase transition and ionic conductivity changes of Cd-substituted Bi4V2O11 - δ, Solid State Ionics 179 (39) (2008) 2260-2264 [35] L. Mao, X.Y. Cai, M.S. Zhu, Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance, Rare Met. 40 (5) (2021) 1067-1076 [36] S. Zulfiqar, S. Liu, N. Rahman, H. Tang, S. Shah, X.H. Yu, Q.Q. Liu, Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2-production photocatalyst, Rare Met. 40 (9) (2021) 2381-2391 [37] S.L. Chu, X.P. Yan, C. Choi, S. Hong, A.W. Robertson, J. Masa, B.X. Han, Y. Jung, Z.Y. Sun, Stabilization of Cu+ by tuning a CuO-CeO2 interface for selective electrochemical CO2 reduction to ethylene, Green Chem. 22 (19) (2020) 6540-6546 [38] M.W. Jia, S. Hong, T.S. Wu, X. Li, Y.L. Soo, Z.Y. Sun, Single Sb sites for efficient electrochemical CO2 reduction, Chem. Commun. 55 (80) (2019) 12024-12027 [39] S.L. Chu, S. Hong, J. Masa, X. Li, Z.Y. Sun, Synergistic catalysis of CuO/In2O3 composites for highly selective electrochemical CO2 reduction to CO, Chem Commun (Camb) 55 (82) (2019) 12380-12383 [40] Q. Fan, P.F. Hou, C. Choi, T.S. Wu, S. Hong, F. Li, Y.L. Soo, P. Kang, Y. Jung, Z.Y. Sun, Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO 2, Adv. Energy Mater. 10 (5) (2020) 1903068 |