[1] T.N. Nguyen, M. Salehi, Q.V. Le, A. Seifitokaldani, C.T. Dinh, Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts, ACS Catal. 10 (17) (2020) 10068-10095. https://doi.org/10.1021/acscatal.0c02643 [2] N.Q. Zhang, X.X. Zhang, L. Tao, P. Jiang, C.L. Ye, R. Lin, Z.W. Huang, A. Li, D.W. Pang, H. Yan, Y. Wang, P. Xu, S.F. An, Q.H. Zhang, L.C. Liu, S.X. Du, X.D. Han, D.S. Wang, Y.D. Li, Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction, Angew. Chem. Int. Ed. 60 (11) (2021) 6170-6176. https://doi.org/10.1002/anie.202014718 [3] X. Wang, Z.Y. Wang, F.P. García de Arquer, C.T. Dinh, A. Ozden, Y.C. Li, D.H. Nam, J. Li, Y.S. Liu, J. Wicks, Z.T. Chen, M.F. Chi, B. Chen, Y. Wang, J. Tam, J.Y. Howe, A. Proppe, P. Todorović, F.W. Li, T.T. Zhuang, C.M. Gabardo, A.R. Kirmani, C. McCallum, S.F. Hung, Y. Lum, M.C. Luo, Y.M. Min, A.N. Xu, C.P. O'Brien, B. Stephen, B. Sun, A.H. Ip, L.J. Richter, S.O. Kelley, D. Sinton, E.H. Sargent, Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation, Nat. Energy 5 (6) (2020) 478-486. https://doi.org/10.1038/s41560-020-0607-8 [4] G.B. Wen, B.H. Ren, M.G. Park, J. Yang, H.Z. Dou, Z. Zhang, Y.P. Deng, Z.Y. Bai, L. Yang, J. Gostick, G.A. Botton, Y.F. Hu, Z.W. Chen, Back cover:ternary Sn-Ti-O electrocatalyst boosts the stability and energy efficiency of CO2 reduction (angew. chem. int. Ed. 31/2020), Angew. Chem. Int. Ed. 59 (31) (2020) 13124. https://doi.org/10.1002/anie.202007875 [5] S.A. Mahyoub, F.A. Qaraah, S.L. Yan, A. Hezam, J.H. Zhong, Z.M. Cheng, Rational design of low loading Pd-alloyed Ag nanocorals for high current density CO2-to-CO electroreduction at elevated pressure, Mater. Today Energy 24 (2022) 100923. http://dx.doi.org/10.1016/j.mtener.2021.100923 [6] Z.X. Wu, H.B. Wu, W.Q. Cai, Z.H. Wen, B.H. Jia, L. Wang, W. Jin, T.Y. Ma, Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH, Angew. Chem. Int. Ed Engl. 60 (22) (2021) 12554-12559. https://pubmed.ncbi.nlm.nih.gov/33720479/ [7] H.X. Li, X. Yue, Y.S. Qiu, Z. Xiao, X.B. Yu, C. Xue, J.H. Xiang, Selective electroreduction of CO2 to formate over the co-electrodeposited Cu/Sn bimetallic catalyst, Mater. Today Energy 21 (2021) 100797. http://dx.doi.org/10.1016/j.mtener.2021.100797 [8] Q. Fan, M.L. Zhang, M.W. Jia, S.Z. Liu, J.S. Qiu, Z.Y. Sun, Electrochemical CO2 reduction to C2+ species:heterogeneous electrocatalysts, reaction pathways, and optimization strategies, Mater. Today Energy 10 (2018) 280-301. http://dx.doi.org/10.1016/j.mtener.2018.10.003 [9] N. Han, P. Ding, L. He, Y.Y. Li, Y.G. Li, CO2 reduction:promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate (adv. energy mater. 11/2020), Adv. Energy Mater. 10 (11) (2020) 2070046. http://dx.doi.org/10.1002/aenm.202070046 [10] L. Lin, T.F. Liu, J.P. Xiao, H.F. Li, P.F. Wei, D.F. Gao, B. Nan, R. Si, G.X. Wang, X.H. Bao, Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst, Angew. Chem. Int. Ed. 59 (50) (2020) 22408-22413. https://doi.org/10.1002/anie.202009191 [11] S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu, Y. Chen, Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction, Nano-micro Lett. 11 (2019) 1-19 [12] D. Gao, R.M.". Arán-Ais, H.S. Jeon, B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products, Nat. Catal. 2 (3) (2019) 198-210. https://www.nature.com/articles/s41929-019-0235-5%22%3e [13] D.D. Ma, Q.L. Zhu, MOF-based atomically dispersed metal catalysts:recent progress towards novel atomic configurations and electrocatalytic applications, Coord. Chem. Rev. 422 (2020) 213483. http://dx.doi.org/10.1016/j.ccr.2020.213483 [14] P. Shao, L.C. Yi, S.M. Chen, T.H. Zhou, J. Zhang, Metal-organic frameworks for electrochemical reduction of carbon dioxide:the role of metal centers, J. Energy Chem. 40 (2020) 156-170. https://doi.org/10.1016/j.jechem.2019.04.013 [15] Z.Q. Gao, C.Y. Wang, J.J. Li, Y.T. Zhu, Z.C. Zhang, W.P. Hu, Conductive metal-organic frameworks for electrocatalysis:achievements, challenges, and opportunities, Acta Phys. Chimica Sin. (2020) 2010025-. https://doi.org/10.3866/pku.whxb202010025 [16] Q.H. Yang, C.C. Yang, C.H. Lin, H.L. Jiang, Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion, Angew. Chem. Int. Ed. 58 (11) (2019) 3511-3515. https://doi.org/10.1002/anie.201813494 [17] J. Yang, X.L. Wang, Y.T. Qu, X. Wang, H. Huo, Q.K. Fan, J. Wang, L.M. Yang, Y.E. Wu, Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction, Adv. Energy Mater. 10 (36) (2020) 2001709. https://doi.org/10.1002/aenm.202001709 [18] T.A. Al-Attas, N.N. Marei, X. Yong, N.G. Yasri, V. Thangadurai, G. Shimizu, S. Siahrostami, M.G. Kibria, Ligand-engineered metal-organic frameworks for electrochemical reduction of carbon dioxide to carbon monoxide, ACS Catal. 11 (12) (2021) 7350-7357. https://doi.org/10.1021/acscatal.1c01506 [19] Y. Zhang, L. Jiao, W.J. Yang, C.F. Xie, H.L. Jiang, Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction, Angew. Chem. Int. Ed. 60 (14) (2021) 7607-7611. https://doi.org/10.1002/anie.202016219 [20] Z. Weng, Y.S. Wu, M.Y. Wang, J.B. Jiang, K. Yang, S.J. Huo, X.F. Wang, Q. Ma, G.W. Brudvig, V.S. Batista, Y.Y. Liang, Z.X. Feng, H.L. Wang, Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction, Nat. Commun. 9 (1) (2018) 415. https://pubmed.ncbi.nlm.nih.gov/29379087/ [21] E.H. Zhang, T. Wang, K. Yu, J. Liu, W.X. Chen, A. Li, H.P. Rong, R. Lin, S.F. Ji, X.S. Zheng, Y. Wang, L.R. Zheng, C. Chen, D.S. Wang, J.T. Zhang, Y.D. Li, Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction, J. Am. Chem. Soc. 141 (42) (2019) 16569-16573. https://pubmed.ncbi.nlm.nih.gov/31588748/ [22] M.X. Chen, S.P. Wan, L.X. Zhong, D.B. Liu, H.B. Yang, C.C. Li, Z.Q. Huang, C.T. Liu, J. Chen, H.G. Pan, D.S. Li, S.Z. Li, Q.Y. Yan, B. Liu, Dynamic restructuring of Cu-doped SnS 2 nanoflowers for highly selective electrochemical CO2 reduction to formate, Angew. Chem. Int. Ed. 60 (50) (2021) 26233-26237. https://doi.org/10.1002/anie.202111905 [23] D.Z. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao, S.Z. Qiao, The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation, Angew. Chem. Int. Ed. 60 (33) (2021) 18178-18184. https://doi.org/10.1002/anie.202104747 [24] W.H. Geng, W. Chen, G.H. Li, X. Dong, Y.F. Song, W. Wei, Y.H. Sun, Induced CO2 electroreduction to formic acid on metal-organic frameworks via node doping, ChemSusChem 13 (16) (2020) 4035-4040. https://doi.org/10.1002/cssc.202001310 [25] X.N. Li, C.S. Cao, S.F. Hung, Y.R. Lu, W.Z. Cai, A.I. Rykov, S. Miao, S.B. Xi, H.B. Yang, Z.H. Hu, J.H. Wang, J.Y. Zhao, E.E. Alp, W. Xu, T.S. Chan, H.M. Chen, Q.H. Xiong, H. Xiao, B. Liu, Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material, Chem 6 (12) (2020) 3440-3454. http://dx.doi.org/10.1016/j.chempr.2020.10.027 [26] G. Kumari, K. Jayaramulu, T.K. Maji, C. Narayana, Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8:a Raman study, J. Phys. Chem. A 117 (43) (2013) 11006-11012. https://pubmed.ncbi.nlm.nih.gov/24106800/ [27] M. Erkartal, U. Erkilic, B. Tam, H. Usta, O. Yazaydin, J.T. Hupp, O.K. Farha, U. Sen, From 2-methylimidazole to 1, 2, 3-triazole:a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification, Chem. Commun. (Camb) 53 (12) (2017) 2028-2031. https://pubmed.ncbi.nlm.nih.gov/28124040/ [28] S. Dou, J.J. Song, S.B. Xi, Y.H. Du, J. Wang, Z.F. Huang, Z.J. Xu, X. Wang, Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping, Angew. Chem. Int. Ed. 58 (12) (2019) 4041-4045. https://doi.org/10.1002/anie.201814711 [29] R. Daiyan, W.H. Saputera, H. Masood, J. Leverett, X.Y. Lu, R. Amal, A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel, Adv. Energy Mater. 10 (11) (2020) 1902106. https://doi.org/10.1002/aenm.201902106 [30] V. Gabaudan, R. Berthelot, M.T. Sougrati, P.E. Lippens, L. Monconduit, L. Stievano, SnSbvs.Sn:improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb, J. Mater. Chem. A 7 (25) (2019) 15262-15270. https://doi.org/10.1039/c9ta03760h |