[1] R. Bardhan, A.M. Ruminski, A. Brand, J.J. Urban, Magnesium nanocrystal-polymer composites:A new platform for designer hydrogen storage materials, Energy Environ. Sci. 4 (12) (2011) 4882.https://doi.org/10.1039/c1ee02258j [2] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (6861) (2001) 353-358.https://www.ncbi.nlm.nih.gov/pubmed/11713542/ [3] M. Pudukudy, Z. Yaakob, M. Mohammad, B. Narayanan, K. Sopian, Renewable hydrogen economy in Asia-Opportunities and challenges:An overview, Renew. Sustain. Energy Rev. 30 (2014) 743-757.http://dx.doi.org/10.1016/j.rser.2013.11.015 [4] S.Y. Liu, P. Kundu, T.W. Huang, Y.J. Chuang, F.G. Tseng, Y. Lu, M.L. Sui, F.R. Chen, Quasi-2D liquid cell for high density hydrogen storage, Nano Energy 31 (2017) 218-224.http://dx.doi.org/10.1016/j.nanoen.2016.11.017 [5] Y.H. Sun, C.Q. Shen, Q.W. Lai, W. Liu, D.W. Wang, K.F. Aguey-Zinsou, Tailoring magnesium based materials for hydrogen storage through synthesis:Current state of the art, Energy Storage Mater. 10 (2018) 168-198.http://dx.doi.org/10.1016/j.ensm.2017.01.010 [6] H. Zhou, H. Wang, A.D. Sadow, I.I. Slowing, Toward hydrogen economy:Selective guaiacol hydrogenolysis under ambient hydrogen pressure, Appl. Catal. B:Environ. 270 (2020) 118890.http://dx.doi.org/10.1016/j.apcatb.2020.118890 [7] K.J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan, J.J. Urban, Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts, Nat Mater 10 (4) (2011) 286-290.https://www.ncbi.nlm.nih.gov/pubmed/21399630/ [8] N. Juahir, N.S. Mustafa, A.M. Sinin, M. Ismail, Improved hydrogen storage properties of MgH2 by addition of Co2NiO nanoparticles, RSC Adv. 5 (75) (2015) 60983-60989.https://doi.org/10.1039/c5ra07094e [9] M. Konarova, A. Tanksale, J. Norberto Beltramini, Q.L. Gao, Effects of nano-confinement on the hydrogen desorption properties of MgH2, Nano Energy 2(1) (2013) 98-104. http://dx.doi.org/10.1016/j.nanoen.2012.07.024. [10] L.S. Xie, J.S. Li, T.B. Zhang, L. Song, H.C. Kou, Microstructure and hydrogen storage properties of Mg-Ni-Ce alloys with a long-period stacking ordered phase, J. Power Sources 338 (2017) 91-102.http://dx.doi.org/10.1016/j.jpowsour.2016.11.025 [11] Y.Q. Lei, Y.M. Wu, Q.M. Yang, J. Wu, Q.D. Wang, Electrochemical behaviour of some mechanically alloyed Mg-Ni-based amorphous hydrogen storage alloys, Zeitschrift Für Physikalische Chemie 183 (1-2) (1994) 379-384.https://doi.org/10.1524/zpch.1994.183.part_1_2.379 [12] Q. Li, Q. Luo, Q.F. Gu, Insights into the composition exploration of novel hydrogen storage alloys:Evaluation of the Mg-Ni-Nd-H phase diagram, J. Mater. Chem. A 5 (8) (2017) 3848-3864.https://doi.org/10.1039/c6ta10090b [13] M.G. Verón, H. Troiani, F.C. Gennari, Synergetic effect of Co and carbon nanotubes on MgH2 sorption properties, Carbon 49 (7) (2011) 2413-2423. http://dx.doi.org/10.1016/j.carbon.2011.02.008 [14] Y.J. Chai, Z.Y. Liu, H.N. Gao, Z.Y. Zhao, N. Wang, D.L. Hou, Microstructure and hydrogen storage properties of porous Ni@Mg, Int. J. Hydrog. Energy 36 (22) (2011) 14484-14487.h ttp://dx.doi.org/10.1016/j.ijhydene.2011.08.024 [15] X.L. Ding, H.F. Ding, Y. Song, C.L. Xiang, Y.T. Li, Q.G. Zhang, Activity-tuning of supported Co-Ni nanocatalysts via composition and morphology for hydrogen storage in MgH2, Front Chem 7 (2019) 937.https://www.ncbi.nlm.nih.gov/pubmed/32047735/ [16] Q. Li, Y. Li, B. Liu, X.G. Lu, T.F. Zhang, Q.F. Gu, The cycling stability of the in situ formed Mg-based nanocomposite catalyzed by YH2, J. Mater. Chem. A 5 (33) (2017) 17532-17543. https://doi.org/10.1039/c7ta04551d. [17] Y. Wang, Z.M. Ding, X.J. Li, S.Q. Ren, S.H. Zhou, H.M. Zhang, Y. Li, S.M. Han, Improved hydrogen storage properties of MgH2 by nickel@nitrogen-doped carbon spheres, Dalton Trans. 49 (11) (2020) 3495-3502.https://doi.org/10.1039/d0dt00025f [18] Z.L. Ma, J.C. Liu, Y.F. Zhu, Y.Y. Zhao, H.J. Lin, Y. Zhang, H.W. Li, J.G. Zhang, Y.N. Liu, W.T. Gao, S.S. Li, L.Q. Li, Crystal-facet-dependent catalysis of anatase TiO2 on hydrogen storage of MgH2, J. Alloy. Compd. 822 (2020) 153553.http://dx.doi.org/10.1016/j.jallcom.2019.153553 [19] Q. Li, K.C. Chou, Q. Lin, L.J. Jiang, F. Zhan, Hydrogen absorption and desorption kinetics of Ag-Mg-Ni alloys, Int. J. Hydrog. Energy 29 (8) (2004) 843-849.http://dx.doi.org/10.1016/j.ijhydene.2003.10.002 [20] J.L. Bobet, E. Akiba, B. Darriet, Study of Mg-M (M=Co, Ni and Fe) mixture elaborated by reactive mechanical alloying:Hydrogen sorption properties, Int. J. Hydrog. Energy 26 (5) (2001) 493-501.http://dx.doi.org/10.1016/S0360-3199(00)00082-3 [21] D. Korablov, F. Besenbacher, T.R. Jensen, Kinetics and thermodynamics of hydrogenation-dehydrogenation for Mg-25%TM (TM=Ti, Nb or V) composites synthesized by reactive ball milling in hydrogen, Int. J. Hydrog. Energy 43 (34) (2018) 16804-16814. http://dx.doi.org/10.1016/j.ijhydene.2018.05.091. [22] R.A. Varin, S. Li, C. Chiu, L. Guo, O. Morozova, T. Khomenko, Z. Wronski, Nanocrystalline and non-crystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg-X (X = Fe, Co, Mn, B) systems, J. Alloy. Compd. 404-406 (2005) 494-498.http://dx.doi.org/10.1016/j.jallcom.2004.12.176 [23] W. Su, Y.F. Zhu, J.G. Zhang, Y.N. Liu, Y. Yang, Q.F. Mao, L.Q. Li, Effect of multi-wall carbon nanotubes supported nano-nickel and TiF3 addition on hydrogen storage properties of magnesium hydride, J. Alloy. Compd. 669 (2016) 8-18.http://dx.doi.org/10.1016/j.jallcom.2016.01.253 [24] X. Zhang, Z.H. Leng, M.X. Gao, J.J. Hu, F. Du, J.H. Yao, H.G. Pan, Y.F. Liu, Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2, J. Power Sources 398 (2018) 183-192.http://dx.doi.org/10.1016/j.jpowsour.2018.07.072 [25] T.Z. Si, X.Y. Zhang, J.J. Feng, X.L. Ding, Y.T. Li, Enhancing hydrogen sorption in MgH2 by controlling particle size and contact of Ni catalysts, Rare Met. 40 (4) (2021) 995-1002. http://dx.doi.org/10.1007/s12598-018-1087-x. [26] M.S. Yahya, M. Ismail, Improvement of hydrogen storage properties of MgH2 catalyzed by K2NbF7 and multiwall carbon nanotube, J. Phys. Chem. C 122 (21) (2018) 11222-11233. https://doi.org/10.1021/acs.jpcc.8b02162. [27] L.T. Zhang, Z.L. Cai, Z.D. Yao, L. Ji, Z. Sun, N.H. Yan, B.Y. Zhang, B.B. Xiao, J. Du, X.Q. Zhu, L.X. Chen, A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2, J. Mater. Chem. A 7 (10) (2019) 5626-5634. https://doi.org/10.1039/c9ta00120d. [28] M. Ismail, N.S. Mustafa, N.A. Ali, N.A. Sazelee, M.S. Yahya, The hydrogen storage properties and catalytic mechanism of the CuFe2O4-doped MgH2 composite system, Int. J. Hydrog. Energy 44 (1) (2019) 318-324. http://dx.doi.org/10.1016/j.ijhydene.2018.04.191. [29] M.S. Yahya, M. Ismail, Catalytic effect of SrTiO3 on the hydrogen storage behaviour of MgH2, J. Energy Chem. 28 (2019) 46-53.http://dx.doi.org/10.1016/j.jechem.2017.10.020 [30] J. Cui, J.W. Liu, H. Wang, L.Z. Ouyang, D.L. Sun, M. Zhu, X.D. Yao, Mg-TM (TM:Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures:Synthesis, hydrogen storage performance and catalytic mechanism, J. Mater. Chem. A 2 (25) (2014) 9645-9655. https://doi.org/10.1039/c4ta00221k. [31] L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, X.D. Yao, Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites, J. Phys. Chem. C 118 (15) (2014) 7808-7820. http://dx.doi.org/10.1021/jp500439n. [32] D. Pukazhselvan, N. Nasani, T. Yang, I. Bdikin, A.V. Kovalevsky, D.P. Fagg, Dehydrogenation properties of magnesium hydride loaded with Fe, Fe-C, and Fe-Mg additives, ChemPhysChem 18 (3) (2017) 287-291. https://doi.org/10.1002/cphc.201601078. [33] N. Hanada, T. Ichikawa, H. Fujii, Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling, J. Phys. Chem. B 109 (15) (2005) 7188-7194. https://www.ncbi.nlm.nih.gov/pubmed/16851820/. [34] S.C. Gao, H.Z. Liu, L. Xu, S.Q. Li, X.H. Wang, M. Yan, Hydrogen storage properties of nano-CoB/CNTs catalyzed MgH2, J. Alloy. Compd. 735 (2018) 635-642.http://dx.doi.org/10.1016/j.jallcom.2017.11.047 [35] M.J. Liu, X.Z. Xiao, S.C. Zhao, M. Chen, J.F. Mao, B.S. Luo, L.X. Chen, Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride, J. Mater. Chem. A 7 (10) (2019) 5277-5287. https://doi.org/10.1039/c8ta12431k. [36] C. Xu, H.J. Lin, J.C. Liu, P. Zhang, Y.Y. Meng, Y.N. Liu, J.G. Zhang, L.Q. Li, Y.F. Zhu, Improved hydrogen absorption/desorption properties of MgH2 by Co-catalyzing of YH2 and Co@C, ChemistrySelect 4 (26) (2019) 7709-7714. https://doi.org/10.1002/slct.201901475. [37] He Y, Wang L, Chen Z, Shen B, Wei J, Zeng P, Wen X, Catalytic ozonation for metoprolol and ibuprofen removal over different MnO2 nanocrystals:Efficiency, transformation and mechanism, Sci Total Environ 785 (2021) 147328.https://www.ncbi.nlm.nih.gov/pubmed/33940402/ [38] M. Zhang, X.Z. Xiao, X.W. Wang, M. Chen, Y.H. Lu, M.J. Liu, L.X. Chen, Excellent catalysis of TiO2 nanosheets with high-surface-energy {001} facets on the hydrogen storage properties of MgH2, Nanoscale 11 (15) (2019) 7465-7473. https://www.ncbi.nlm.nih.gov/pubmed/30942207/. [39] X.W. Wang, G.T. Fei, P. Tong, X.J. Xu, L.D. Zhang, Structural control and magnetic properties of electrodeposited Co nanowires, J. Cryst. Growth 300(2) (2007) 421-425. http://dx.doi.org/10.1016/j.jcrysgro.2006.12.039. [40] L.T. Zhang, L. Ji, Z.D. Yao, N.H. Yan, Z. Sun, X.L. Yang, X.Q. Zhu, S.L. Hu, L.X. Chen, Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2, Int. J. Hydrog. Energy 44 (39) (2019) 21955-21964. http://dx.doi.org/10.1016/j.ijhydene.2019.06.065. [41] X. Lu, L.T. Zhang, H.J. Yu, Z.Y. Lu, J.H. He, J.G. Zheng, F.Y. Wu, L.X. Chen, Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J. 422 (2021) 130101.http://dx.doi.org/10.1016/j.cej.2021.130101 [42] B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 113 (18) (2000) 7756-7764. https://doi.org/10.1063/1.1316015. [43] B. Delley, DMol3 DFT studies:From molecules and molecular environments to surfaces and solids, Comput. Mater. Sci. 17 (2-4) (2000) 122-126. http://dx.doi.org/10.1016/S0927-0256(00)00008-2. [44] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865.https://doi.org/10.1103/physrevlett.77.3865 [45] D.A. McKnight, J.P. Simmer, P.S. Hart, T.C. Hart, L.W. Fisher, Overlapping DSPP mutations cause dentin dysplasia and dentinogenesis imperfecta, J. Dent. Res. 87 (12) (2008) 1108-1111. https://doi.org/10.1177/154405910808701217. [46] P. Marfey, M. Ottesen, Determination ofd-amino acids. I. Hydrolysis of DNP-l-amino acid methyl esters with carboxypeptidase-Y, Carlsberg Res. Commun. 49 (6) (1984) 585-590. http://dx.doi.org/10.1007/BF02908687. [47] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (11) (1957) 1702-1706. https://doi.org/10.1021/ac60131a045. [48] N.A. Sazelee, N.H. Idris, M.F. Md Din, M. S Yahya, N.A. Ali, M. Ismail, LaFeO3 synthesised by solid-state method for enhanced sorption properties of MgH2, Results Phys. 16 (2020) 102844.http://dx.doi.org/10.1016/j.rinp.2019.102844 [49] Y. Cheng, J. Bi, W. Zhang, The hydrogen storage properties of MgH2-Fe7S8 composites, Mater. Adv. 2 (2) (2021) 736-742.https://doi.org/10.1039/d0ma00818d [50] M. Ismail, M.S. Yahya, N.A. Sazelee, N.A. Ali, F.A.H. Yap, N.S. Mustafa, The effect of K2SiF6 on the MgH2 hydrogen storage properties, J. Magnes. Alloy. 8 (3) (2020) 832-840. http://dx.doi.org/10.1016/j.jma.2020.04.002. [51] M. Zhang, X.Z. Xiao, Z.M. Hang, M. Chen, X.C. Wang, N. Zhang, L.X. Chen, Superior catalysis of NbN nanoparticles with intrinsic multiple valence on reversible hydrogen storage properties of magnesium hydride, Int. J. Hydrog. Energy 46 (1) (2021) 814-822. http://dx.doi.org/10.1016/j.ijhydene.2020.09.173. [52] T. Huang, X. Huang, C. Hu, J. Wang, H. Liu, Z. Ma, J. Zou, W. Ding, Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods, Mater. Today Energy 19 (2021) 100613.http://dx.doi.org/10.1016/j.mtener.2020.100613 [53] M.C. Weinberg, D.P. BirnieIII, V.A. ShneidmanIII, Crystallization kinetics and the JMAK equation, J. Non-Cryst. Solids 219 (1997) 89-99.http://dx.doi.org/10.1016/S0022-3093(97)00261-5 [54] M. Castro, F. Domınguez-Adame, A. Sánchez, T. Rodrıguez, Model for crystallization kinetics:Deviations from Kolmogorov-Johnson-Mehl-Avrami kinetics, Appl. Phys. Lett. 75 (15) (1999) 2205-2207. https://doi.org/10.1063/1.124965. [55] F. Jensen, Activation energies and the Arrhenius equation, Qual. Reliab. Engng. Int. 1 (1) (1985) 13-17.https://doi.org/10.1002/qre.4680010104 [56] M.J. Liu, X.Z. Xiao, S.C. Zhao, S. Saremi-Yarahmadi, M. Chen, J.G. Zheng, S.Q. Li, L.X. Chen, ZIF-67 derived Co@CNTs nanoparticles:Remarkably improved hydrogen storage properties of MgH2 and synergetic catalysis mechanism, Int. J. Hydrog. Energy 44 (2) (2019) 1059-1069. http://dx.doi.org/10.1016/j.ijhydene.2018.11.078. [57] J. Huot, G. Liang, S. Boily, A. van Neste, R. Schulz, Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride, J. Alloy. Compd. 293-295 (1999) 495-500.http://dx.doi.org/10.1016/S0925-8388(99)00474-0 [58] X.S. Liu, H.Z. Liu, N. Qiu, Y.B. Zhang, G.Y. Zhao, L. Xu, Z.Q. Lan, J. Guo, Cycling hydrogen desorption properties and microstructures of MgH2-AlH3-NbF5 hydrogen storage materials, Rare Met. 40 (4) (2021) 1003-1007. http://dx.doi.org/10.1007/s12598-020-01425-1. |