[1] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy Rev. 39 (2014) 426-443.10.1016/j.rser.2014.07.093 [2] R.L. Siegelman, P.J. Milner, E.J. Kim, S.C. Weston, J.R. Long, Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions, Energy Environ. Sci. 12 (7) (2019) 2161-2173.10.1039/c9ee00505f [3] P. Tontiwachwuthikul, R. Idem, Recent Progress and New Developments in Post-Combustion Carbon-Capture Technology with Reactive Solvents, Future Science Ltd., London, 2013, pp. 2-8.https://www.researchgate.net/publication/309502469_Recent_progress_and_new_developments_in_post-combustion_carbon-capture_technology_with_reactive_solvents [4] E.E. Ünveren, B.Ö. Monkul, Ş. Sarıoğlan, N. Karademir, E. Alper, Solid amine sorbents for CO2 capture by chemical adsorption:A review, Petroleum 3 (1) (2017) 37-50.10.1016/j.petlm.2016.11.001 [5] T.L.P. Dantas, F.M.T. Luna, I.J. Silva Jr, D.C.S. de Azevedo, C.A. Grande, A.E. Rodrigues, R.F.P.M. Moreira, Carbon dioxide-nitrogen separation through adsorption on activated carbon in a fixed bed, Chem. Eng. J. 169 (1-3) (2011) 11-19.10.1016/j.cej.2010.08.026 [6] M.G. Plaza, A.S. González, C. Pevida, J.J. Pis, F. Rubiera, Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications, Appl. Energy 99 (2012) 272-279.10.1016/j.apenergy.2012.05.028 [7] M.G. Plaza, A.S. González, J.J. Pis, F. Rubiera, C. Pevida, Production of microporous biochars by single-step oxidation:Effect of activation conditions on CO2 capture, Appl. Energy 114 (2014) 551-562.10.1016/j.apenergy.2013.09.058 [8] F. Akhtar, L. Andersson, N. Keshavarzi, L. Bergström, Colloidal processing and CO2 capture performance of sacrificially templated zeolite monoliths, Appl. Energy 97 (2012) 289-296.10.1016/j.apenergy.2011.12.064 [9] S.J. Datta, C. Khumnoon, Z.H. Lee, W.K. Moon, S. Docao, T.H. Nguyen, I.C. Hwang, D. Moon, P. Oleynikov, O. Terasaki, K.B. Yoon, CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate, Science 350 (6258) (2015) 302-306.https://pubmed.ncbi.nlm.nih.gov/26472904/ [10] D.P. Bezerra, F.W.M. da Silva, P.A.S. de Moura, A.G.S. Sousa, R.S. Vieira, E. Rodriguez-Castellon, D.C.S. Azevedo, CO2 adsorption in amine-grafted zeolite 13X, Appl. Surf. Sci. 314 (2014) 314-321.10.1016/j.apsusc.2014.06.164 [11] R. Chatti, A.K. Bansiwal, J.A. Thote, V. Kumar, P. Jadhav, S.K. Lokhande, R.B. Biniwale, N.K. Labhsetwar, S.S. Rayalu, Amine loaded zeolites for carbon dioxide capture:Amine loading and adsorption studies, Microporous Mesoporous Mater. 121 (1-3) (2009) 84-89.10.1016/j.micromeso.2009.01.007 [12] M. Broda, C.R. Müller, Sol-gel-derived, CaO-based, ZrO2-stabilized CO2 sorbents, Fuel 127 (2014) 94-100.10.1016/j.fuel.2013.08.004 [13] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks, Chem. Rev. 112 (2) (2012) 724-781.https://pubmed.ncbi.nlm.nih.gov/22204561/ [14] R. Dawson, A.I. Cooper, D.J. Adams, Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers, Polym. Int. 62 (3) (2013) 345-352.10.1002/pi.4407 [15] T.C. Drage, C.E. Snape, L.A. Stevens, J. Wood, J.W. Wang, A.I. Cooper, R. Dawson, X. Guo, C. Satterley, R. Irons, Materials challenges for the development of solid sorbents for post-combustion carbon capture, J. Mater. Chem. 22 (7) (2012) 2815-2823.10.1039/c2jm12592g [16] H.A. Patel, J. Byun, C.T. Yavuz, Carbon dioxide capture adsorbents:Chemistry and methods, ChemSusChem 10 (7) (2017) 1303-1317.https://pubmed.ncbi.nlm.nih.gov/28001318/ [17] S. Karka, S. Kodukula, S.V. Nandury, U. Pal, Polyethylenimine-modified zeolite 13X for CO2 capture:Adsorption and kinetic studies, ACS Omega 4 (15) (2019) 16441-16449.https://pubmed.ncbi.nlm.nih.gov/31616822/ [18] V. Tejavath, V. Kasarabada, S. Gonuguntla, V. Perupoga, S.V. Nandury, S. Bojja, U. Pal, Technoeconomic investigation of amine-grafted zeolites and their kinetics for CO2 capture, ACS Omega 6 (9) (2021) 6153-6162.https://pubmed.ncbi.nlm.nih.gov/33718706/ [19] A. Sayari, Y. Belmabkhout, Stabilization of amine-containing CO2 adsorbents:Dramatic effect of water vapor, J. Am. Chem. Soc. 132 (18) (2010) 6312-6314.https://pubmed.ncbi.nlm.nih.gov/20405941/ [20] C. Kim, H.S. Cho, S. Chang, S.J. Cho, M. Choi, An ethylenediamine-grafted Y zeolite:A highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation, Energy Environ. Sci. 9 (5) (2016) 1803-1811.10.1039/c6ee00601a [21] A.D. Ebner, M.L. Gray, N.G. Chisholm, Q.T. Black, D.D. Mumford, M.A. Nicholson, J.A. Ritter, Suitability of a solid amine sorbent for CO2 capture by pressure swing adsorption, Ind. Eng. Chem. Res. 50 (9) (2011) 5634-5641.10.1021/ie2000709 [22] A. Golmakani, S. Fatemi, J. Tamnanloo, Investigating PSA, VSA, and TSA methods in SMR unit of refineries for hydrogen production with fuel cell specification, Sep. Purif. Technol. 176 (2017) 73-91.10.1016/j.seppur.2016.11.030 [23] W. Lutz, R.A. Shutilov, V.Y. Gavrilov, Pore structure of USY zeolites in dependence on steaming condition, Zeitschrift Für Anorg. Und Allgemeine Chemie 640 (3-4) (2014) 577-581.10.1002/zaac.201300403 [24] D. Verboekend, N. Nuttens, R. Locus, J. van Aelst, P. Verolme, J.C. Groen, J. Pérez-Ramírez, B.F. Sels, Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites:Milestones, challenges, and future directions, Chem. Soc. Rev. 45 (12) (2016) 3331-3352.10.1039/c5cs00520e [25] F.S. Su, C. Lu, S.C. Kuo, W.T. Zeng, Adsorption of CO2 on amine-functionalized Y-type zeolites, Energy Fuels 24 (2) (2010) 1441-1448.10.1021/ef901077k [26] T.D. Pham, R.F. Lobo, Adsorption equilibria of CO2 and small hydrocarbons in AEI-, CHA-, STT-, and RRO-type siliceous zeolites, Microporous Mesoporous Mater. 236 (2016) 100-108.10.1016/j.micromeso.2016.08.025 [27] R. Kusumastuti, Sriyono, M. Pancoko, S.L. Butarbutar, G.E. Putra, H. Tjahjono, Study on the mechanism of CO2 adsorption process on zeolite 5A as a molecular sieve in RDE system:An infrared investigation, J. Phys. Conf. Ser.1198(3), (2019) 032009 [28] D. Bonenfant, M. Kharoune, P. Niquette, M. Mimeault, R. Hausler, Advances in principal factors influencing carbon dioxide adsorption on zeolites, Sci. Technol. Adv. Mater. 9 (1) (2008) 013007.https://pubmed.ncbi.nlm.nih.gov/27877925/ [29] W. Li, S. Choi, J.H. Drese, M. Hornbostel, G. Krishnan, P.M. Eisenberger, C.W. Jones, Steam-stripping for regeneration of supported amine-based CO2 adsorbents, ChemSusChem 3 (8) (2010) 899-903.https://pubmed.ncbi.nlm.nih.gov/20575143/ [30] N. Otsuka, Fireside Corrosion, Shreir's Corrosion, 2010, pp. 457-481 [31] W. Shao, L.Z. Zhang, L.X. Li, R.L. Lee, Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures, Adsorption 15 (5-6) (2009) 497-505.10.1007/s10450-009-9200-y [32] W. Jia, S. Murad, Molecular dynamics simulations of gas separations using faujasite-type zeolite membranes, J. Chem. Phys. 120 (10) (2004) 4877-4885.https://pubmed.ncbi.nlm.nih.gov/15267348/ [33] A.E.O. Lima, V.A.M. Gomes, S.M.P. Lucena, Theoretical study of CO2:N2 adsorption in faujasite impregnated with monoethanolamine, Braz. J. Chem. Eng. 32 (3) (2015) 663-669.10.1590/0104-6632.20150323s00003450 |