[1] O. Hoegh-Guldberg, P.J. Mumby, A.J. Hooten, R.S. Steneck, P. Greenfield, E. Gomez, C.D. Harvell, P.F. Sale, A.J. Edwards, K. Caldeira, N. Knowlton, C.M. Eakin, R. Iglesias-Prieto, N. Muthiga, R.H. Bradbury, A. Dubi, M.E. Hatziolos, Coral reefs under rapid climate change and ocean acidification, Science 318 (5857) (2007) 1737-1742.https://pubmed.ncbi.nlm.nih.gov/18079392/ [2] J.C. Orr, V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.F. Weirig, Y. Yamanaka, A. Yool, Anthropogenic Ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature 437 (7059) (2005) 681-686.https://doi.org/10.1038/nature04095 [3] T. Sakakura, J.C. Choi, H. Yasuda, Transformation of carbon dioxide, Chem. Rev. 107 (6) (2007) 2365-2387.https://pubmed.ncbi.nlm.nih.gov/17564481/ [4] Y.B. Wang, Y.M. Wang, W.Z. Zhang, X.B. Lu, Fast CO2 sequestration, activation, and catalytic transformation using N-heterocyclic olefins, J. Am. Chem. Soc. 135 (32) (2013) 11996-12003.https://doi.org/10.1021/ja405114e [5] J. Meessen, Urea synthesis, Chemie Ingenieur Tech. 86 (12) (2014) 2180-2189.https://doi.org/10.1002/cite.201400064 [6] J. Meessen, Urea synthesis, Chemie Ingenieur Tech. 86 (12) (2014) 2180-2189.https://doi.org/10.1002/cite.201400064 [7] S. Bian, C.L. Pagan, A.A. Andrianova "Artemyeva", G.D. Du, Synthesis of polycarbonates and poly(ether carbonate)s directly from carbon dioxide and diols promoted by a Cs2CO3/CH2Cl2 system, ACS Omega 1 (5) (2016) 1049-1057. [8] O.S. Joo, K.D. Jung, I. Moon, A.Y. Rozovskii, G.I. Lin, S.H. Han, S.J. Uhm, Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process), Ind. Eng. Chem. Res. 38 (5) (1999) 1808-1812.https://doi.org/10.1021/ie9806848 [9] X.M. Liu, G.Q. Lu, Z.F. Yan, J. Beltramini, Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2, Ind. Eng. Chem. Res. 42 (25) (2003) 6518-6530.https://doi.org/10.1021/ie020979s [10] L.L. Lin, J.J. Liu, X. Liu, Z.R. Gao, N. Rui, S.Y. Yao, F. Zhang, M.L. Wang, C. Liu, L.L. Han, F. Yang, S. Zhang, X.D. Wen, S.D. Senanayake, Y.C. Wu, X.N. Li, J.A. Rodriguez, D. Ma, Reversing sintering effect of Ni particles on γ-Mo2N via strong metal support interaction, Nat. Commun. 12 (2021) 6978.https://doi.org/10.1038/s41467-021-27116-8 [11] D. Hildebrandt, D. Glasser, B. Hausberger, B. Patel, B.J. Glasser, Chemistry. Producing transportation fuels with less work, Science 323 (5922) (2009) 1680-1681.https://pubmed.ncbi.nlm.nih.gov/19325103/ [12] L.L. Lin, S.Y. Yao, N. Rui, L.L. Han, F. Zhang, C.A. Gerlak, Z.Y. Liu, J.J. Cen, L. Song, S.D. Senanayake, H.L. Xin, J.G. Chen, J.A. Rodriguez, Conversion of CO2 on a highly active and stable Cu/FeOx/CeO2 catalyst:Tuning catalytic performance by oxide-oxide interactions, Catal. Sci. Technol. 9 (14) (2019) 3735-3742.https://doi.org/10.1039/c9cy00722a [13] L.L. Lin, S.Y. Yao, Z.Y. Liu, F. Zhang, N. Li, D. Vovchok, A. Martínez-Arias, R. Castañeda, J.Y. Lin, S.D. Senanayake, D. Su, D. Ma, J.A. Rodriguez, In situ characterization of Cu/CeO2 nanocatalysts for CO2 hydrogenation:Morphological effects of nanostructured ceria on the catalytic activity, J. Phys. Chem. C 122 (24) (2018) 12934-12943.https://doi.org/10.1021/acs.jpcc.8b03596 [14] Y. Yu, R.X. Jin, J. Easa, W. Lu, M. Yang, X.C. Liu, Y. Xing, Z. Shi, Highly active and stable copper catalysts derived from copper silicate double-shell nanofibers with strong metal-support interactions for the RWGS reaction, Chem. Commun. 55 (29) (2019) 4178-4181.https://doi.org/10.1039/c9cc00297a [15] L.L. Lin, C.A. Gerlak, C. Liu, J. Llorca, S.Y. Yao, N. Rui, F. Zhang, Z.Y. Liu, S. Zhang, K.X. Deng, C.B. Murray, J.A. Rodriguez, S.D. Senanayake, Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst, J. Energy Chem. 61 (2021) 602-611.http://dx.doi.org/10.1016/j.jechem.2021.02.021 [16] K.X. Deng, L.L. Lin, N. Rui, D. Vovchok, F. Zhang, S.H. Zhang, S.D. Senanayake, T. Kim, J.A. Rodriguez, Studies of CO2 hydrogenation over cobalt/ceria catalysts with in situ characterization:The effect of cobalt loading and metal-support interactions on the catalytic activity, Catal. Sci. Technol. 10 (19) (2020) 6468-6482.https://doi.org/10.1039/d0cy00962h [17] D.O. Kumi, M.W. Dlamini, T.N. Phaahlamohlaka, S.D. Mhlanga, N.J. Coville, M.S. Scurrell, Selective CO methanation over Ru supported on carbon spheres:The effect of carbon functionalization on the reverse water gas shift reaction, Catal. Lett. 148 (11) (2018) 3502-3513.http://dx.doi.org/10.1007/s10562-018-2546-6 [18] S.S. Kim, K.H. Park, S.C. Hong, A study of the selectivity of the reverse water-gas-shift reaction over Pt/TiO2 catalysts, Fuel Process. Technol. 108 (2013) 47-54.http://dx.doi.org/10.1016/j.fuproc.2012.04.003 [19] J.A. Moulijn, A.E. van Diepen, F. Kapteijn, Catalyst deactivation:Is it predictable?:What to do? Appl. Catal. A Gen. 212 (1-2) (2001) 3-16.http://dx.doi.org/10.1016/S0926-860X(00)00842-5 [20] X. Zhang, X.B. Zhu, L.L. Lin, S.Y. Yao, M.T. Zhang, X. Liu, X.P. Wang, Y.W. Li, C. Shi, D. Ma, Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction, ACS Catal. 7 (1) (2017) 912-918.http://dx.doi.org/10.1021/acscatal.6b02991 [21] X.Y. Liu, A. Pajares, D.D. Calinao Matienzo, P. Ramírez de la Piscina, N. Homs, Preparation and characterization of bulk MoXC catalysts and their use in the reverse water-gas shift reaction, Catal. Today 356 (2020) 384-389.http://dx.doi.org/10.1016/j.cattod.2019.11.011 [22] Q. Zhang, L. Pastor-Pérez, W. Jin, S. Gu, T.R. Reina, Understanding the promoter effect of Cu and Cs over highly effective β-Mo2C catalysts for the reverse water-gas shift reaction, Appl. Catal. B Environ. 244 (2019) 889-898.http://dx.doi.org/10.1016/j.apcatb.2018.12.023 [23] R.B. Levy, M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis, Science 181 (4099) (1973) 547-549.https://pubmed.ncbi.nlm.nih.gov/17777803/ [24] S.Y. Yao, L.L. Lin, W.J. Liao, N. Rui, N. Li, Z.Y. Liu, J.J. Cen, F. Zhang, X. Li, L. Song, L. Betancourt de Leon, D. Su, S.D. Senanayake, P. Liu, D. Ma, J.G. Chen, J.A. Rodriguez, Exploring metal-support interactions to immobilize subnanometer co clusters on γ-Mo2N:A highly selective and stable catalyst for CO2 activation, ACS Catal. 9 (10) (2019) 9087-9097.https://doi.org/10.1021/acscatal.9b01945 [25] N. Liu, L. Nie, N.H. Xue, H.H. Dong, L.M. Peng, X.F. Guo, W.P. Ding, Catalytic ammonia synthesis over Mo nitride/ZSM-5, ChemCatChem 2 (2) (2010) 167-174.https://doi.org/10.1002/cctc.200900155 [26] M.D. Porosoff, J.W. Baldwin, X. Peng, G. Mpourmpakis, H.D. Willauer, Potassium-promoted molybdenum carbide as a highly active and selective catalyst for CO2 conversion to CO, ChemSusChem 10 (11) (2017) 2408-2415.https://doi.org/10.1002/cssc.201700412 [27] V.D.B.C. Dasireddy, D. Vengust, B. Likozar, J. Kovač, A. Mrzel, Production of syngas by CO2 reduction through Reverse Water-Gas Shift (RWGS) over catalytically-active molybdenum-based carbide, nitride and composite nanowires, Renew. Energy 176 (2021) 251-261.http://dx.doi.org/10.1016/j.renene.2021.05.051 [28] R.N. Panda, S.B. Dalavi, J. Theerthagiri, Synthesis of high surface area W2N and co-W-N nitrides by chemical routes, Adsorpt. Sci. Technol. 30 (4) (2012) 345-354.https://doi.org/10.1260/0263-6174.30.4.345 [29] Y.G. Li, L. Gao, Synthesis and characterization of nanocrystalline niobium nitride powders, J. Am. Ceram. Soc. 86 (7) (2003) 1205-1207.https://doi.org/10.1111/j.1151-2916.2003.tb03449.x [30] B.H. Toby, R.B. von Dreele, GSAS-II:The genesis of a modern open-source all purpose crystallography software package, J. Appl. Crystallogr. 46 (2) (2013) 544-549.https://doi.org/10.1107/s0021889813003531 [31] B. Clausen, In situ cell for combined XRD and on-line catalysis tests:Studies of Cu-based water gas shift and methanol catalysts, J. Catal. 132 (2) (1991) 524-535.https://doi.org/10.1016/0021-9517(91)90168-4 [32] L. Volpe, M. Boudart, Compounds of molybdenum and tungsten with high specific surface area:I. Nitrides, J. Solid State Chem. 59 (3) (1985) 332-347.http://dx.doi.org/10.1016/0022-4596(85)90301-9 [33] L.L. Lin, W. Zhou, R. Gao, S.Y. Yao, X. Zhang, W.Q. Xu, S.J. Zheng, Z. Jiang, Q.L. Yu, Y.W. Li, C. Shi, X.D. Wen, D. Ma, Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts, Nature 544 (7648) (2017) 80-83.https://doi.org/10.1038/nature21672 [34] J.S. Lee, L. Volpe, F.H. Ribeiro, M. Boudart, Molybdenum carbide catalysts:II. topotactic synthesis of unsupported powders, J. Catal. 112 (1) (1988) 44-53.http://dx.doi.org/10.1016/0021-9517(88)90119-4 [35] M. Suleiman, N.M. Jisrawi, O. Dankert, M.T. Reetz, C. Bähtz, R. Kirchheim, A. Pundt, Phase transition and lattice expansion during hydrogen loading of nanometer sized palladium clusters, J. Alloys Compd. 356-357 (2003) 644-648.http://dx.doi.org/10.1016/S0925-8388(02)01286-0 [36] S. Yamaguchi, N. Yamada, Thermal lattice expansion behavior of Yb-doped BaCeO3, Solid State Ion. 162-163 (2003) 23-29.http://dx.doi.org/10.1016/S0167-2738(03)00249-2 [37] M.A. Vannice, An analysis of the Mars-van Krevelen rate expression, Catal. Today 123 (1-4) (2007) 18-22.http://dx.doi.org/10.1016/j.cattod.2007.02.002 [38] D. Widmann, R.J. Behm, Dynamic surface composition in a Mars-van Krevelen type reaction:CO oxidation on Au/TiO2, J. Catal. 357 (2018) 263-273.http://dx.doi.org/10.1016/j.jcat.2017.11.005 |