中国化学工程学报 ›› 2022, Vol. 43 ›› Issue (3): 255-265.DOI: 10.1016/j.cjche.2022.01.016
Haocui Zhang1, Zhourong Xiao1, Mei Yang2, Jijun Zou1, Guozhu Liu1, Xiangwen Zhang1
收稿日期:
2021-08-30
修回日期:
2021-12-14
出版日期:
2022-03-28
发布日期:
2022-04-28
通讯作者:
Guozhu Liu,E-mail:gLiu@tju.edu.cn;Xiangwen Zhang,E-mail:zhangxiangwen@tju.edu.cn
基金资助:
Haocui Zhang1, Zhourong Xiao1, Mei Yang2, Jijun Zou1, Guozhu Liu1, Xiangwen Zhang1
Received:
2021-08-30
Revised:
2021-12-14
Online:
2022-03-28
Published:
2022-04-28
Contact:
Guozhu Liu,E-mail:gLiu@tju.edu.cn;Xiangwen Zhang,E-mail:zhangxiangwen@tju.edu.cn
Supported by:
摘要: Ni/SBA-15 modified by highly dispersed cerium-oxide was prepared with the aid of sucrose for steam reforming of JP10 (C10H16). Their characterization showed that addition of appropriate amount ceria led to the formation of highly dispersed CeO2 and Ni, and the CeO2 covered smaller nickel particles like strawberry seeds to form much more interface between them. Their catalytic activity exhibited higher stability over time on stream of 6.5 h with conversion higher than 95% and higher carbon resistance (mass loss less than 4.5% by TG), which may derive from good properties below: (1) much more interface enhanced cooperation effect and increased turnover frequency at the interface; (2) the stronger interaction between Ni and ceria to suppress sintering by formation of Ni-O-Ce solid solution; (3) the large amount of oxygen vacancies from the formation of Ni-O-Ce solid solution and highly dispersed CeO2 to facilitate the water–gas–shift reaction and carbon removal.
Haocui Zhang, Zhourong Xiao, Mei Yang, Jijun Zou, Guozhu Liu, Xiangwen Zhang. Highly dispersible cerium-oxide modified Ni/SBA-15 for steam reforming of bio-mass based JP10[J]. 中国化学工程学报, 2022, 43(3): 255-265.
Haocui Zhang, Zhourong Xiao, Mei Yang, Jijun Zou, Guozhu Liu, Xiangwen Zhang. Highly dispersible cerium-oxide modified Ni/SBA-15 for steam reforming of bio-mass based JP10[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 255-265.
[1] T. Ahmed, S.N. Xiu, L.J. Wang, A. Shahbazi, Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound, Fuel 211 (2018) 566-571. http://dx.doi.org/10.1016/j.fuel.2017.09.051 [2] S. Dunn, Hydrogen futures:toward a sustainable energy system, Int. J. Hydrog. Energy 27 (3) (2002) 235-264. http://dx.doi.org/10.1016/S0360-3199(01)00131-8 [3] Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński, K.R. Khalilpour, Hydrogen as an energy vector, Renew. Sustain. Energy Rev. 120 (2020) 109620. http://dx.doi.org/10.1016/j.rser.2019.109620 [4] Y.S. Wang, D.F. Liang, C.S. Wang, M.Q. Chen, Z.Y. Tang, J.X. Hu, Z.L. Yang, H. Zhang, J. Wang, S.M. Liu, Influence of calcination temperature of Ni/Attapulgite on hydrogen production by steam reforming ethanol, Renew. Energy 160 (2020) 597-611. http://dx.doi.org/10.1016/j.renene.2020.06.126 [5] D.L. Trimm, Z.I. Önsan, Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles, Catal. Rev. 43 (1-2) (2001) 31-84. http://dx.doi.org/10.1081/CR-100104386 [6] V.S. Guggilla, J. Akyurtlu, A. Akyurtlu, I. Blankson, Steam reforming of n-dodecane over Ru-Ni-based catalysts, Ind. Eng. Chem. Res. 49 (17) (2010) 8164-8173. http://dx.doi.org/10.1021/ie100811g [7] A.A. Bozdag, A.D. Deniz Kaynar, T. Dogu, N.A. Sezgi, Development of ceria and tungsten promoted nickel/alumina catalysts for steam reforming of diesel, Chem. Eng. J. 377 (2019) 120274. http://dx.doi.org/10.1016/j.cej.2018.10.211 [8] Q.Q. Xue, Z.W. Li, Z. Jiang, M. Chen, B.H. Yan, Y.J. Wang, G.S. Luo, Effect of characteristic component on diesel steam reforming to hydrogen over highly dispersed Ni-Rh- and Ni-based catalysts:experiment and DFT calculation study, Fuel 303 (2021) 121306. http://dx.doi.org/10.1016/j.fuel.2021.121306 [9] Z. Mi, J. Yan, J. Li, Y. Xu, Study on catalysts for fixed bed hydrogenation of dicyclopentadiene, Journal of Fuel Chemistry and Technology 25 (1997) 492-497 [10] G.Y. Li, B.L. Hou, A.Q. Wang, X.L. Xin, Y. Cong, X.D. Wang, N. Li, T. Zhang, Making JP-10 superfuel affordable with a lignocellulosic platform compound, Angew. Chem. 131 (35) (2019) 12282-12286. https://doi.org/10.1002/ange.201906744 [11] H.C. Zhang, Z.R. Xiao, M. Yang, Y.J. Tian, G.Z. Li, X.W. Zhang, G.Z. Liu, Catalytic steam reforming of JP-10 over Ni/SBA-15, Int. J. Hydrog. Energy 45 (7) (2020) 4284-4296. http://dx.doi.org/10.1016/j.ijhydene.2019.12.049 [12] F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O.D. Blasi, G. Bonura, S. Cavallaro, Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts:hydrogen production for MC fuel cell, Appl. Catal. A Gen. 270 (1-2) (2004) 1-7. http://dx.doi.org/10.1016/j.apcata.2004.03.052 [13] X.H. Yu, S.C. Zhang, L.Q. Wang, Q. Jiang, S.G. Li, Z. Tao, Hydrogen production from steam reforming of kerosene over Ni-La and Ni-La-K/cordierite catalysts, Fuel 85 (12-13) (2006) 1708-1713. http://dx.doi.org/10.1016/j.fuel.2006.02.009 [14] F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, G. Bonura, S. Cavallaro, Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC, J. Power Sources 132 (1-2) (2004) 139-144. http://dx.doi.org/10.1016/j.jpowsour.2003.12.032 [15] C. Jiménez-González, Z. Boukha, B. de Rivas, J.R. González-Velasco, J.I. Gutiérrez-Ortiz, R. López-Fonseca, Behaviour of nickel-alumina spinel (NiAl2O4) catalysts for isooctane steam reforming, Int. J. Hydrog. Energy 40 (15) (2015) 5281-5288. http://dx.doi.org/10.1016/j.ijhydene.2015.01.064 [16] M. Sugisawa, K. Takanabe, M. Harada, J. Kubota, K. Domen, Effects of La addition to Ni/Al2O3 catalysts on rates and carbon deposition during steam reforming of n-dodecane, Fuel Process. Technol. 92 (1) (2011) 21-25. http://dx.doi.org/10.1016/j.fuproc.2010.08.014 [17] J.H. Kim, D.J. Suh, T.J. Park, K.L. Kim, Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts, Appl. Catal. A Gen. 197 (2) (2000) 191-200. http://dx.doi.org/10.1016/S0926-860X(99)00487-1 [18] H.S. Bengaard, J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, J.R. Rostrup-Nielsen, Steam reforming and graphite formation on Ni catalysts, J. Catal. 209 (2) (2002) 365-384. http://dx.doi.org/10.1006/jcat.2002.3579 [19] de Chen, K.O. Christensen, E. Ochoa-Fernández, Z.X. Yu, B. Tøtdal, N. Latorre, A. Monzón, A. Holmen, Synthesis of carbon nanofibers:effects of Ni crystal size during methane decomposition, J. Catal. 229 (1) (2005) 82-96. http://dx.doi.org/10.1016/j.jcat.2004.10.017 [20] G. Słowik, A. Gawryszuk-Rżysko, M. Greluk, A. Machocki, Estimation of average crystallites size of active phase in ceria-supported cobalt-based catalysts by hydrogen chemisorption vs TEM and XRD methods, Catal. Lett. 146 (10) (2016) 2173-2184. http://dx.doi.org/10.1007/s10562-016-1843-1 [21] A. Borodziński, M. Bonarowska, Relation between crystallite size and dispersion on supported metal catalysts, Langmuir 13 (21) (1997) 5613-5620. https://doi.org/10.1021/la962103u [22] Z.F. Bian, I.Y. Suryawinata, S. Kawi, Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane, Appl. Catal. B Environ. 195 (2016) 1-8. http://dx.doi.org/10.1016/j.apcatb.2016.05.001 [23] C.X. Zhang, W.C. Zhu, S.R. Li, G.W. Wu, X.B. Ma, X. Wang, J.L. Gong, Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect, Chem. Commun. 49 (82) (2013) 9383. https://doi.org/10.1039/c3cc43895c [24] W.H. Shen, H. Momoi, K. Komatsubara, T. Saito, A. Yoshida, S. Naito, Marked role of mesopores for the prevention of sintering and carbon deposition in dry reforming of methane over ordered mesoporous Ni-Mg-Al oxides, Catal. Today 171 (1) (2011) 150-155. http://dx.doi.org/10.1016/j.cattod.2011.04.003 [25] D. Li, L. Zeng, X.Y. Li, X. Wang, H.Y. Ma, S. Assabumrungrat, J.L. Gong, Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation, Appl. Catal. B Environ. 176-177 (2015) 532-541. http://dx.doi.org/10.1016/j.apcatb.2015.04.020 [26] V. Shanmugam, R. Zapf, S. Neuberg, V. Hessel, G. Kolb, Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors, Appl. Catal. B Environ. 203 (2017) 859-869. http://dx.doi.org/10.1016/j.apcatb.2016.10.075 [27] S.R. Li, J.L. Gong, Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions, Chem. Soc. Rev. 43 (21) (2014) 7245-7256. https://pubmed.ncbi.nlm.nih.gov/25182070/ [28] H. Friedrich, J.R.A. Sietsma, P.E. de Jongh, A.J. Verkleij, K.P. de Jong, Measuring location, size, distribution, and loading of NiO crystallites in individual SBA-15 pores by electron tomography, J. Am. Chem. Soc. 129 (33) (2007) 10249-10254. https://doi.org/10.1021/ja0728876 [29] J. Tao, L.Q. Zhao, C.Q. Dong, Q. Lu, X.Z. Du, E. Dahlquist, Catalytic steam reforming of toluene as a model compound of biomass gasification tar using Ni-CeO2/SBA-15 catalysts, Energies 6 (7) (2013) 3284-3296. https://doi.org/10.3390/en6073284 [30] E. Vunain, P. Ncube, K. Jalama, R. Meijboom, Confinement effect of rhodium(I) complex species on mesoporous MCM-41 and SBA-15:effect of pore size on the hydroformylation of 1-octene, J. Porous Mater. 25 (1) (2018) 303-320. http://dx.doi.org/10.1007/s10934-017-0443-9 [31] P. Osorio-Vargas, N.A. Flores-González, R.M. Navarro, J.L.G. Fierro, C.H. Campos, P. Reyes, Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction, Catal. Today 259 (2016) 27-38. http://dx.doi.org/10.1016/j.cattod.2015.04.037 [32] M.Q. Chen, D.F. Liang, Y.S. Wang, C.S. Wang, Z.Y. Tang, C. Li, J.X. Hu, W. Cheng, Z.L. Yang, H. Zhang, J. Wang, Hydrogen production by ethanol steam reforming over M-Ni/sepiolite (M=La, Mg or Ca) catalysts, Int. J. Hydrog. Energy 46 (42) (2021) 21796-21811. http://dx.doi.org/10.1016/j.ijhydene.2021.04.012 [33] M.Q. Chen, J.X. Hu, Y.S. Wang, C.S. Wang, Z.Y. Tang, C. Li, D.F. Liang, W. Cheng, Z.L. Yang, H. Zhang, Hydrogen production from acetic acid steam reforming over Ti-modified Ni/Attapulgite catalysts, Int. J. Hydrog. Energy 46 (5) (2021) 3651-3668. http://dx.doi.org/10.1016/j.ijhydene.2020.10.196 [34] N. Wang, W. Chu, T. Zhang, X.S. Zhao, Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas, Int. J. Hydrog. Energy 37 (1) (2012) 19-30. http://dx.doi.org/10.1016/j.ijhydene.2011.03.138 [35] M.Y. Cheng, C.J. Pan, B.J. Hwang, Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15:Blockage-free nanochannels, J. Mater. Chem. 19 (29) (2009) 5193. https://doi.org/10.1039/b902949d [36] S.H. Zhang, S. Muratsugu, N. Ishiguro, M. Tada, Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane, ACS Catal. 3 (8) (2013) 1855-1864. https://doi.org/10.1021/cs400159w [37] J. Carrasco, D. López-Durán, Z.Y. Liu, T. Duchoň, J. Evans, S.D. Senanayake, E.J. Crumlin, V. Matolín, J.A. Rodríguez, M.V. Ganduglia-Pirovano, In situ and theoretical studies for the dissociation of water on an active Ni/CeO2Catalyst:importance of strong metal-support interactions for the cleavage of O-H bonds, Angew. Chem. Int. Ed. 54 (13) (2015) 3917-3921. https://doi.org/10.1002/anie.201410697 [38] N.N. Mikheeva, V.I. Zaikovskii, G.V. Mamontov, Synthesis of ceria nanoparticles in pores of SBA-15:pore size effect and influence of citric acid addition, Microporous Mesoporous Mater. 277 (2019) 10-16. http://dx.doi.org/10.1016/j.micromeso.2018.10.013 [39] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials, Chem. Rev. 116 (10) (2016) 5987-6041. https://pubmed.ncbi.nlm.nih.gov/27120134/ [40] L. Escamilla-Perea, R. Nava, B. Pawelec, M.G. Rosmaninho, C.L. Peza-Ledesma, J.L.G. Fierro, SBA-15-supported gold nanoparticles decorated by CeO2:structural characteristics and CO oxidation activity, Appl. Catal. A Gen. 381 (1-2) (2010) 42-53. http://dx.doi.org/10.1016/j.apcata.2010.03.038 [41] W.J. Shan, M.F. Luo, P.L. Ying, W.J. Shen, C. Li, Reduction property and catalytic activity of Ce1-XNiXO2 mixed oxide catalysts for CH4 oxidation, Appl. Catal. A Gen. 246 (1) (2003) 1-9. http://dx.doi.org/10.1016/S0926-860X(02)00659-2 [42] F. Schüth, A. Wingen, J. Sauer, Oxide loaded ordered mesoporous oxides for catalytic applications, Microporous Mesoporous Mater. 44-45 (2001) 465-476. http://dx.doi.org/10.1016/S1387-1811(01)00222-0 [43] L. Vradman, M.V. Landau, D. Kantorovich, Y. Koltypin, A. Gedanken, Evaluation of metal oxide phase assembling mode inside the nanotubular pores of mesostructured silica, Microporous Mesoporous Mater. 79 (1-3) (2005) 307-318. http://dx.doi.org/10.1016/j.micromeso.2004.11.023 [44] Q.G. Dai, X.Y. Wang, G.P. Chen, Y. Zheng, G.Z. Lu, Direct synthesis of Cerium(III)-incorporated SBA-15 mesoporous molecular sieves by two-step synthesis method, Microporous Mesoporous Mater. 100 (1-3) (2007) 268-275. http://dx.doi.org/10.1016/j.micromeso.2006.11.015 [45] J.E. Spanier, R.D. Robinson, F. Zhang, S.W. Chan, I.P. Herman, Size-dependent properties ofCeO2-ynanoparticles as studied by Raman scattering, Phys. Rev. B 64 (24) (2001) 245407. https://doi.org/10.1103/physrevb.64.245407 [46] J.A. Rodriguez, S. Ma, P. Liu, J. Hrbek, J. Evans, M. Pérez, Activity of CeO x and TiO x nanoparticles grown on Au(111) in the water-gas shift reaction, Science 318 (5857) (2007) 1757-1760. https://doi.org/10.1126/science.1150038 [47] N. Wang, K. Shen, L.H. Huang, X.P. Yu, W.Z. Qian, W. Chu, Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas, ACS Catal. 3 (7) (2013) 1638-1651. https://doi.org/10.1021/cs4003113 [48] L. He, B.L. Liang, L. Li, X.F. Yang, Y.Q. Huang, A.Q. Wang, X.D. Wang, T. Zhang, Cerium-oxide-modified nickel as a non-noble metal catalyst for selective decomposition of hydrous hydrazine to hydrogen, ACS Catal. 5 (3) (2015) 1623-1628. https://doi.org/10.1021/acscatal.5b00143 [49] B. Wang, Y.Y. Xiong, Y.Y. Han, J.P. Hong, Y.H. Zhang, J.L. Li, F.L. Jing, W. Chu, Preparation of stable and highly active Ni/CeO2 catalysts by glow discharge plasma technique for glycerol steam reforming, Appl. Catal. B Environ. 249 (2019) 257-265. http://dx.doi.org/10.1016/j.apcatb.2019.02.074 [50] H. Zhu, Pd/CeO2? TiO2 catalyst for CO oxidation at low temperature:a TPR study with H2 and CO as reducing agents, J. Catal. 225 (2) (2004) 267-277. https://doi.org/10.1016/j.jcat.2004.04.006 [51] G.B. Sun, K. Hidajat, X.S. Wu, S. Kawi, A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts, Appl. Catal. B Environ. 81 (3-4) (2008) 303-312. http://dx.doi.org/10.1016/j.apcatb.2007.12.021 [52] S. Carrettin, P. Concepción, A. Corma, J.M. López Nieto, V.F. Puntes, Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude, Angew. Chem. Int. Ed. 43 (19) (2004) 2538-2540. https://doi.org/10.1002/anie.200353570 [53] Z.R. Xiao, Y.T. Li, F. Hou, C. Wu, L. Pan, J.J. Zou, L. Wang, X.W. Zhang, G.Z. Liu, G.Z. Li, Engineering oxygen vacancies and nickel dispersion on CeO2 by Pr doping for highly stable ethanol steam reforming, Appl. Catal. B Environ. 258 (2019) 117940. http://dx.doi.org/10.1016/j.apcatb.2019.117940 [54] D. Świerczyński, S. Libs, C. Courson, A. Kiennemann, Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound, Appl. Catal. B Environ. 74 (3-4) (2007) 211-222. http://dx.doi.org/10.1016/j.apcatb.2007.01.017 [55] Z.R. Xiao, S. Ji, F. Hou, Y.T. Li, H.C. Zhang, L. Wang, X.W. Zhang, G.Z. Liu, J.J. Zou, G.Z. Li, N-Dodecane steam reforming catalyzed by Ni-Ce-Pr catalysts. Part 1:catalyst preparation and Pr doping, Catal. Today 316 (2018) 78-90. http://dx.doi.org/10.1016/j.cattod.2018.02.036 [56] M. Artetxe, M.A. Nahil, M. Olazar, P.T. Williams, Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst, Fuel 184 (2016) 629-636 [57] Z.M. Zhang, X. Hu, L.J. Zhang, Y. Yang, Q.Y. Li, H.L. Fan, Q. Liu, T. Wei, C.Z. Li, Steam reforming of guaiacol over Ni/Al2O3 and Ni/SBA-15:impacts of support on catalytic behaviors of nickel and properties of coke, Fuel Process. Technol. 191 (2019) 138-151. http://dx.doi.org/10.1016/j.fuproc.2019.04.001 [58] E. Savuto, R.M. Navarro, N. Mota, A.D. Carlo, E. Bocci, M. Carlini, J.L.G. Fierro, Steam reforming of tar model compounds over Ni/Mayenite catalysts:effect of Ce addition, Fuel 224 (2018) 676-686. http://dx.doi.org/10.1016/j.fuel.2018.03.081 [59] A. Ochoa, I. Barbarias, M. Artetxe, A.G. Gayubo, M. Olazar, J. Bilbao, P. Castaño, Deactivation dynamics of a Ni supported catalyst during the steam reforming of volatiles from waste polyethylene pyrolysis, Appl. Catal. B Environ. 209 (2017) 554-565. http://dx.doi.org/10.1016/j.apcatb.2017.02.015 [60] T. Huang, W. Huang, J. Huang, P. Ji, Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts, Fuel Process. Technol. 92 (10) (2011) 1868-1875. http://dx.doi.org/10.1016/j.fuproc.2011.05.002 [61] N.V. Parizotto, K.O. Rocha, S. Damyanova, F.B. Passos, D. Zanchet, C.M.P. Marques, J.M.C. Bueno, Alumina-supported Ni catalysts modified with silver for the steam reforming of methane:effect of Ag on the control of coke formation, Appl. Catal. A Gen. 330 (2007) 12-22. http://dx.doi.org/10.1016/j.apcata.2007.06.022 [62] K.Y. Koo, S.H. Lee, U.H. Jung, H.S. Roh, W.L. Yoon, Syngas production via combined steam and carbon dioxide reforming of methane over Ni-Ce/MgAl2O4 catalysts with enhanced coke resistance, Fuel Process. Technol. 119 (2014) 151-157. http://dx.doi.org/10.1016/j.fuproc.2013.11.005 [63] F. Alenazey, C.G. Cooper, C.B. Dave, S.S.E.H. Elnashaie, A.A. Susu, A.A. Adesina, Coke removal from deactivated Co-Ni steam reforming catalyst using different gasifying agents:an analysis of the gas-solid reaction kinetics, Catal. Commun. 10 (4) (2009) 406-411. http://dx.doi.org/10.1016/j.catcom.2008.10.010 [64] S. Vetrivel, J.S. Do, M.Y. Cheng, B.J. Hwang, Simple catalyst for the effective growth of carbon nanotubes by CVD, J. Phys. Chem. C 111 (44) (2007) 16211-16218. http://dx.doi.org/10.1021/jp0727188 [65] J. Vicente, C. Montero, J. Ereña, M.J. Azkoiti, J. Bilbao, A.G. Gayubo, Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor, Int. J. Hydrog. Energy 39 (24) (2014) 12586-12596. http://dx.doi.org/10.1016/j.ijhydene.2014.06.093 |
[1] | Yishuang Wang, Na Li, Mingqiang Chen, Defang Liang, Chang Li, Quan Liu, Zhonglian Yang, Jun Wang. Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation[J]. 中国化学工程学报, 2022, 48(8): 176-190. |
[2] | Hongbin Shi, Qing Liu, Xiaofeng Dai, Teng Zhang, Yuling Shi, Tao Wang. Magnetic graphene oxide-anchored Ni/Cu nanoparticles with a Cu-rich surface for transfer hydrogenation of nitroaromatics[J]. 中国化学工程学报, 2022, 50(10): 235-246. |
[3] | Chen Xu, Zhenyi Du, Shiqi Yang, Hongda Ma, Jie Feng. Effects of inherent potassium on the catalytic performance of Ni/biochar for steam reforming of toluene as a tar model compound[J]. 中国化学工程学报, 2021, 35(7): 189-195. |
[4] | Junyang Xu, Yanjun Jiang, Liya Zhou, Li Ma, Zhihong Huang, Jiafu Shi, Jing Gao, Ying He. Nickel-Carnosine complex: A new carrier for enzymes immobilization by affinity adsorption[J]. 中国化学工程学报, 2021, 38(10): 237-246. |
[5] | S. I. Moussa, M. M. S. Ali, Reda R. Sheha. The performance of activated carbon/NiFe2O4 magnetic composite to retain heavy metal ions from aqueous solution[J]. 中国化学工程学报, 2021, 29(1): 135-145. |
[6] | Ammaru Ismaila, Huanhao Chen, Yan Shao, Shaojun Xu, Yilai Jiao, Xueli Chen, Xin Gao, Xiaolei Fan. Renewable hydrogen production from steam reforming of glycerol (SRG) over ceria-modified γ-alumina supported Ni catalyst[J]. 中国化学工程学报, 2020, 28(9): 2328-2336. |
[7] | Xinxin Dong, Baosheng Jin, Zhiwei Kong, Yiqing Sun. Promotion effect of Re additive on the bifunctional Ni catalysts for methanation coupling with water gas shift of biogas: Insights from activation energy[J]. 中国化学工程学报, 2020, 28(6): 1628-1636. |
[8] | Huangang Shi, Qianjun Li, Wenyi Tan, Hao Qiu, Chao Su. Solid oxide fuel cells in combination with biomass gasification for electric power generation[J]. 中国化学工程学报, 2020, 28(4): 1156-1161. |
[9] | Ashutosh Kumar, Ram Prasad, Yogesh Chandra Sharma. Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation[J]. 中国化学工程学报, 2019, 27(3): 677-684. |
[10] | Abrar Khan, Raja Arumugam Senthil, Junqing Pan, Yanzhi Sun. A facile preparation of 3D flower-shaped Ni/Al-LDHs covered by β-Ni(OH)2 nanoplates as superior material for high power application[J]. 中国化学工程学报, 2019, 27(10): 2526-2534. |
[11] | V. Elakkiya, R. Abhishekram, S. Sumathi. Copper doped nickel aluminate: Synthesis, characterisation, optical and colour properties[J]. 中国化学工程学报, 2019, 27(10): 2596-2605. |
[12] | Mengjuan Zhang, Panpan Li, Mingyuan Zhu, Zhiqun Tian, Jianming Dan, Jiangbing Li, Bin Dai, Feng Yu. Ultralow-weight loading Ni catalyst supported on two-dimensional vermiculite for carbon monoxide methanation[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1873-1878. |
[13] | Anis H. Fakeeha, Ahmed S. Al-Fatesh, Biswajit Chowdhury, Ahmed A. Ibrahim, Wasim U. Khan, Shahid Hassan, Kasim Sasudeen, Ahmed Elhag Abasaeed. Bi-metallic catalysts of mesoporous Al2O3 supported on Fe, Ni and Mn for methane decomposition: Effect of activation temperature[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1904-1911. |
[14] | Chun Shen, Wuqing Zhou, Hao Yu, Le Du. Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene (model tar)[J]. Chinese Journal of Chemical Engineering, 2018, 26(2): 322-329. |
[15] | Tianrong Cao, Weipeng Zhang, Jingcai Cheng, Chao Yang. Comparative experimental study on reactive crystallization of Ni(OH)2 in an airlift-loop reactor and a stirred reactor[J]. Chinese Journal of Chemical Engineering, 2018, 26(1): 196-206. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||