[1] T. Ahmed, S.N. Xiu, L.J. Wang, A. Shahbazi, Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound, Fuel 211 (2018) 566-571. http://dx.doi.org/10.1016/j.fuel.2017.09.051 [2] S. Dunn, Hydrogen futures:toward a sustainable energy system, Int. J. Hydrog. Energy 27 (3) (2002) 235-264. http://dx.doi.org/10.1016/S0360-3199(01)00131-8 [3] Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński, K.R. Khalilpour, Hydrogen as an energy vector, Renew. Sustain. Energy Rev. 120 (2020) 109620. http://dx.doi.org/10.1016/j.rser.2019.109620 [4] Y.S. Wang, D.F. Liang, C.S. Wang, M.Q. Chen, Z.Y. Tang, J.X. Hu, Z.L. Yang, H. Zhang, J. Wang, S.M. Liu, Influence of calcination temperature of Ni/Attapulgite on hydrogen production by steam reforming ethanol, Renew. Energy 160 (2020) 597-611. http://dx.doi.org/10.1016/j.renene.2020.06.126 [5] D.L. Trimm, Z.I. Önsan, Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles, Catal. Rev. 43 (1-2) (2001) 31-84. http://dx.doi.org/10.1081/CR-100104386 [6] V.S. Guggilla, J. Akyurtlu, A. Akyurtlu, I. Blankson, Steam reforming of n-dodecane over Ru-Ni-based catalysts, Ind. Eng. Chem. Res. 49 (17) (2010) 8164-8173. http://dx.doi.org/10.1021/ie100811g [7] A.A. Bozdag, A.D. Deniz Kaynar, T. Dogu, N.A. Sezgi, Development of ceria and tungsten promoted nickel/alumina catalysts for steam reforming of diesel, Chem. Eng. J. 377 (2019) 120274. http://dx.doi.org/10.1016/j.cej.2018.10.211 [8] Q.Q. Xue, Z.W. Li, Z. Jiang, M. Chen, B.H. Yan, Y.J. Wang, G.S. Luo, Effect of characteristic component on diesel steam reforming to hydrogen over highly dispersed Ni-Rh- and Ni-based catalysts:experiment and DFT calculation study, Fuel 303 (2021) 121306. http://dx.doi.org/10.1016/j.fuel.2021.121306 [9] Z. Mi, J. Yan, J. Li, Y. Xu, Study on catalysts for fixed bed hydrogenation of dicyclopentadiene, Journal of Fuel Chemistry and Technology 25 (1997) 492-497 [10] G.Y. Li, B.L. Hou, A.Q. Wang, X.L. Xin, Y. Cong, X.D. Wang, N. Li, T. Zhang, Making JP-10 superfuel affordable with a lignocellulosic platform compound, Angew. Chem. 131 (35) (2019) 12282-12286. https://doi.org/10.1002/ange.201906744 [11] H.C. Zhang, Z.R. Xiao, M. Yang, Y.J. Tian, G.Z. Li, X.W. Zhang, G.Z. Liu, Catalytic steam reforming of JP-10 over Ni/SBA-15, Int. J. Hydrog. Energy 45 (7) (2020) 4284-4296. http://dx.doi.org/10.1016/j.ijhydene.2019.12.049 [12] F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O.D. Blasi, G. Bonura, S. Cavallaro, Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts:hydrogen production for MC fuel cell, Appl. Catal. A Gen. 270 (1-2) (2004) 1-7. http://dx.doi.org/10.1016/j.apcata.2004.03.052 [13] X.H. Yu, S.C. Zhang, L.Q. Wang, Q. Jiang, S.G. Li, Z. Tao, Hydrogen production from steam reforming of kerosene over Ni-La and Ni-La-K/cordierite catalysts, Fuel 85 (12-13) (2006) 1708-1713. http://dx.doi.org/10.1016/j.fuel.2006.02.009 [14] F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, G. Bonura, S. Cavallaro, Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC, J. Power Sources 132 (1-2) (2004) 139-144. http://dx.doi.org/10.1016/j.jpowsour.2003.12.032 [15] C. Jiménez-González, Z. Boukha, B. de Rivas, J.R. González-Velasco, J.I. Gutiérrez-Ortiz, R. López-Fonseca, Behaviour of nickel-alumina spinel (NiAl2O4) catalysts for isooctane steam reforming, Int. J. Hydrog. Energy 40 (15) (2015) 5281-5288. http://dx.doi.org/10.1016/j.ijhydene.2015.01.064 [16] M. Sugisawa, K. Takanabe, M. Harada, J. Kubota, K. Domen, Effects of La addition to Ni/Al2O3 catalysts on rates and carbon deposition during steam reforming of n-dodecane, Fuel Process. Technol. 92 (1) (2011) 21-25. http://dx.doi.org/10.1016/j.fuproc.2010.08.014 [17] J.H. Kim, D.J. Suh, T.J. Park, K.L. Kim, Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts, Appl. Catal. A Gen. 197 (2) (2000) 191-200. http://dx.doi.org/10.1016/S0926-860X(99)00487-1 [18] H.S. Bengaard, J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, J.R. Rostrup-Nielsen, Steam reforming and graphite formation on Ni catalysts, J. Catal. 209 (2) (2002) 365-384. http://dx.doi.org/10.1006/jcat.2002.3579 [19] de Chen, K.O. Christensen, E. Ochoa-Fernández, Z.X. Yu, B. Tøtdal, N. Latorre, A. Monzón, A. Holmen, Synthesis of carbon nanofibers:effects of Ni crystal size during methane decomposition, J. Catal. 229 (1) (2005) 82-96. http://dx.doi.org/10.1016/j.jcat.2004.10.017 [20] G. Słowik, A. Gawryszuk-Rżysko, M. Greluk, A. Machocki, Estimation of average crystallites size of active phase in ceria-supported cobalt-based catalysts by hydrogen chemisorption vs TEM and XRD methods, Catal. Lett. 146 (10) (2016) 2173-2184. http://dx.doi.org/10.1007/s10562-016-1843-1 [21] A. Borodziński, M. Bonarowska, Relation between crystallite size and dispersion on supported metal catalysts, Langmuir 13 (21) (1997) 5613-5620. https://doi.org/10.1021/la962103u [22] Z.F. Bian, I.Y. Suryawinata, S. Kawi, Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane, Appl. Catal. B Environ. 195 (2016) 1-8. http://dx.doi.org/10.1016/j.apcatb.2016.05.001 [23] C.X. Zhang, W.C. Zhu, S.R. Li, G.W. Wu, X.B. Ma, X. Wang, J.L. Gong, Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect, Chem. Commun. 49 (82) (2013) 9383. https://doi.org/10.1039/c3cc43895c [24] W.H. Shen, H. Momoi, K. Komatsubara, T. Saito, A. Yoshida, S. Naito, Marked role of mesopores for the prevention of sintering and carbon deposition in dry reforming of methane over ordered mesoporous Ni-Mg-Al oxides, Catal. Today 171 (1) (2011) 150-155. http://dx.doi.org/10.1016/j.cattod.2011.04.003 [25] D. Li, L. Zeng, X.Y. Li, X. Wang, H.Y. Ma, S. Assabumrungrat, J.L. Gong, Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation, Appl. Catal. B Environ. 176-177 (2015) 532-541. http://dx.doi.org/10.1016/j.apcatb.2015.04.020 [26] V. Shanmugam, R. Zapf, S. Neuberg, V. Hessel, G. Kolb, Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors, Appl. Catal. B Environ. 203 (2017) 859-869. http://dx.doi.org/10.1016/j.apcatb.2016.10.075 [27] S.R. Li, J.L. Gong, Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions, Chem. Soc. Rev. 43 (21) (2014) 7245-7256. https://pubmed.ncbi.nlm.nih.gov/25182070/ [28] H. Friedrich, J.R.A. Sietsma, P.E. de Jongh, A.J. Verkleij, K.P. de Jong, Measuring location, size, distribution, and loading of NiO crystallites in individual SBA-15 pores by electron tomography, J. Am. Chem. Soc. 129 (33) (2007) 10249-10254. https://doi.org/10.1021/ja0728876 [29] J. Tao, L.Q. Zhao, C.Q. Dong, Q. Lu, X.Z. Du, E. Dahlquist, Catalytic steam reforming of toluene as a model compound of biomass gasification tar using Ni-CeO2/SBA-15 catalysts, Energies 6 (7) (2013) 3284-3296. https://doi.org/10.3390/en6073284 [30] E. Vunain, P. Ncube, K. Jalama, R. Meijboom, Confinement effect of rhodium(I) complex species on mesoporous MCM-41 and SBA-15:effect of pore size on the hydroformylation of 1-octene, J. Porous Mater. 25 (1) (2018) 303-320. http://dx.doi.org/10.1007/s10934-017-0443-9 [31] P. Osorio-Vargas, N.A. Flores-González, R.M. Navarro, J.L.G. Fierro, C.H. Campos, P. Reyes, Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction, Catal. Today 259 (2016) 27-38. http://dx.doi.org/10.1016/j.cattod.2015.04.037 [32] M.Q. Chen, D.F. Liang, Y.S. Wang, C.S. Wang, Z.Y. Tang, C. Li, J.X. Hu, W. Cheng, Z.L. Yang, H. Zhang, J. Wang, Hydrogen production by ethanol steam reforming over M-Ni/sepiolite (M=La, Mg or Ca) catalysts, Int. J. Hydrog. Energy 46 (42) (2021) 21796-21811. http://dx.doi.org/10.1016/j.ijhydene.2021.04.012 [33] M.Q. Chen, J.X. Hu, Y.S. Wang, C.S. Wang, Z.Y. Tang, C. Li, D.F. Liang, W. Cheng, Z.L. Yang, H. Zhang, Hydrogen production from acetic acid steam reforming over Ti-modified Ni/Attapulgite catalysts, Int. J. Hydrog. Energy 46 (5) (2021) 3651-3668. http://dx.doi.org/10.1016/j.ijhydene.2020.10.196 [34] N. Wang, W. Chu, T. Zhang, X.S. Zhao, Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas, Int. J. Hydrog. Energy 37 (1) (2012) 19-30. http://dx.doi.org/10.1016/j.ijhydene.2011.03.138 [35] M.Y. Cheng, C.J. Pan, B.J. Hwang, Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15:Blockage-free nanochannels, J. Mater. Chem. 19 (29) (2009) 5193. https://doi.org/10.1039/b902949d [36] S.H. Zhang, S. Muratsugu, N. Ishiguro, M. Tada, Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane, ACS Catal. 3 (8) (2013) 1855-1864. https://doi.org/10.1021/cs400159w [37] J. Carrasco, D. López-Durán, Z.Y. Liu, T. Duchoň, J. Evans, S.D. Senanayake, E.J. Crumlin, V. Matolín, J.A. Rodríguez, M.V. Ganduglia-Pirovano, In situ and theoretical studies for the dissociation of water on an active Ni/CeO2Catalyst:importance of strong metal-support interactions for the cleavage of O-H bonds, Angew. Chem. Int. Ed. 54 (13) (2015) 3917-3921. https://doi.org/10.1002/anie.201410697 [38] N.N. Mikheeva, V.I. Zaikovskii, G.V. Mamontov, Synthesis of ceria nanoparticles in pores of SBA-15:pore size effect and influence of citric acid addition, Microporous Mesoporous Mater. 277 (2019) 10-16. http://dx.doi.org/10.1016/j.micromeso.2018.10.013 [39] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials, Chem. Rev. 116 (10) (2016) 5987-6041. https://pubmed.ncbi.nlm.nih.gov/27120134/ [40] L. Escamilla-Perea, R. Nava, B. Pawelec, M.G. Rosmaninho, C.L. Peza-Ledesma, J.L.G. Fierro, SBA-15-supported gold nanoparticles decorated by CeO2:structural characteristics and CO oxidation activity, Appl. Catal. A Gen. 381 (1-2) (2010) 42-53. http://dx.doi.org/10.1016/j.apcata.2010.03.038 [41] W.J. Shan, M.F. Luo, P.L. Ying, W.J. Shen, C. Li, Reduction property and catalytic activity of Ce1-XNiXO2 mixed oxide catalysts for CH4 oxidation, Appl. Catal. A Gen. 246 (1) (2003) 1-9. http://dx.doi.org/10.1016/S0926-860X(02)00659-2 [42] F. Schüth, A. Wingen, J. Sauer, Oxide loaded ordered mesoporous oxides for catalytic applications, Microporous Mesoporous Mater. 44-45 (2001) 465-476. http://dx.doi.org/10.1016/S1387-1811(01)00222-0 [43] L. Vradman, M.V. Landau, D. Kantorovich, Y. Koltypin, A. Gedanken, Evaluation of metal oxide phase assembling mode inside the nanotubular pores of mesostructured silica, Microporous Mesoporous Mater. 79 (1-3) (2005) 307-318. http://dx.doi.org/10.1016/j.micromeso.2004.11.023 [44] Q.G. Dai, X.Y. Wang, G.P. Chen, Y. Zheng, G.Z. Lu, Direct synthesis of Cerium(III)-incorporated SBA-15 mesoporous molecular sieves by two-step synthesis method, Microporous Mesoporous Mater. 100 (1-3) (2007) 268-275. http://dx.doi.org/10.1016/j.micromeso.2006.11.015 [45] J.E. Spanier, R.D. Robinson, F. Zhang, S.W. Chan, I.P. Herman, Size-dependent properties ofCeO2-ynanoparticles as studied by Raman scattering, Phys. Rev. B 64 (24) (2001) 245407. https://doi.org/10.1103/physrevb.64.245407 [46] J.A. Rodriguez, S. Ma, P. Liu, J. Hrbek, J. Evans, M. Pérez, Activity of CeO x and TiO x nanoparticles grown on Au(111) in the water-gas shift reaction, Science 318 (5857) (2007) 1757-1760. https://doi.org/10.1126/science.1150038 [47] N. Wang, K. Shen, L.H. Huang, X.P. Yu, W.Z. Qian, W. Chu, Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas, ACS Catal. 3 (7) (2013) 1638-1651. https://doi.org/10.1021/cs4003113 [48] L. He, B.L. Liang, L. Li, X.F. Yang, Y.Q. Huang, A.Q. Wang, X.D. Wang, T. Zhang, Cerium-oxide-modified nickel as a non-noble metal catalyst for selective decomposition of hydrous hydrazine to hydrogen, ACS Catal. 5 (3) (2015) 1623-1628. https://doi.org/10.1021/acscatal.5b00143 [49] B. Wang, Y.Y. Xiong, Y.Y. Han, J.P. Hong, Y.H. Zhang, J.L. Li, F.L. Jing, W. Chu, Preparation of stable and highly active Ni/CeO2 catalysts by glow discharge plasma technique for glycerol steam reforming, Appl. Catal. B Environ. 249 (2019) 257-265. http://dx.doi.org/10.1016/j.apcatb.2019.02.074 [50] H. Zhu, Pd/CeO2? TiO2 catalyst for CO oxidation at low temperature:a TPR study with H2 and CO as reducing agents, J. Catal. 225 (2) (2004) 267-277. https://doi.org/10.1016/j.jcat.2004.04.006 [51] G.B. Sun, K. Hidajat, X.S. Wu, S. Kawi, A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts, Appl. Catal. B Environ. 81 (3-4) (2008) 303-312. http://dx.doi.org/10.1016/j.apcatb.2007.12.021 [52] S. Carrettin, P. Concepción, A. Corma, J.M. López Nieto, V.F. Puntes, Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude, Angew. Chem. Int. Ed. 43 (19) (2004) 2538-2540. https://doi.org/10.1002/anie.200353570 [53] Z.R. Xiao, Y.T. Li, F. Hou, C. Wu, L. Pan, J.J. Zou, L. Wang, X.W. Zhang, G.Z. Liu, G.Z. Li, Engineering oxygen vacancies and nickel dispersion on CeO2 by Pr doping for highly stable ethanol steam reforming, Appl. Catal. B Environ. 258 (2019) 117940. http://dx.doi.org/10.1016/j.apcatb.2019.117940 [54] D. Świerczyński, S. Libs, C. Courson, A. Kiennemann, Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound, Appl. Catal. B Environ. 74 (3-4) (2007) 211-222. http://dx.doi.org/10.1016/j.apcatb.2007.01.017 [55] Z.R. Xiao, S. Ji, F. Hou, Y.T. Li, H.C. Zhang, L. Wang, X.W. Zhang, G.Z. Liu, J.J. Zou, G.Z. Li, N-Dodecane steam reforming catalyzed by Ni-Ce-Pr catalysts. Part 1:catalyst preparation and Pr doping, Catal. Today 316 (2018) 78-90. http://dx.doi.org/10.1016/j.cattod.2018.02.036 [56] M. Artetxe, M.A. Nahil, M. Olazar, P.T. Williams, Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst, Fuel 184 (2016) 629-636 [57] Z.M. Zhang, X. Hu, L.J. Zhang, Y. Yang, Q.Y. Li, H.L. Fan, Q. Liu, T. Wei, C.Z. Li, Steam reforming of guaiacol over Ni/Al2O3 and Ni/SBA-15:impacts of support on catalytic behaviors of nickel and properties of coke, Fuel Process. Technol. 191 (2019) 138-151. http://dx.doi.org/10.1016/j.fuproc.2019.04.001 [58] E. Savuto, R.M. Navarro, N. Mota, A.D. Carlo, E. Bocci, M. Carlini, J.L.G. Fierro, Steam reforming of tar model compounds over Ni/Mayenite catalysts:effect of Ce addition, Fuel 224 (2018) 676-686. http://dx.doi.org/10.1016/j.fuel.2018.03.081 [59] A. Ochoa, I. Barbarias, M. Artetxe, A.G. Gayubo, M. Olazar, J. Bilbao, P. Castaño, Deactivation dynamics of a Ni supported catalyst during the steam reforming of volatiles from waste polyethylene pyrolysis, Appl. Catal. B Environ. 209 (2017) 554-565. http://dx.doi.org/10.1016/j.apcatb.2017.02.015 [60] T. Huang, W. Huang, J. Huang, P. Ji, Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts, Fuel Process. Technol. 92 (10) (2011) 1868-1875. http://dx.doi.org/10.1016/j.fuproc.2011.05.002 [61] N.V. Parizotto, K.O. Rocha, S. Damyanova, F.B. Passos, D. Zanchet, C.M.P. Marques, J.M.C. Bueno, Alumina-supported Ni catalysts modified with silver for the steam reforming of methane:effect of Ag on the control of coke formation, Appl. Catal. A Gen. 330 (2007) 12-22. http://dx.doi.org/10.1016/j.apcata.2007.06.022 [62] K.Y. Koo, S.H. Lee, U.H. Jung, H.S. Roh, W.L. Yoon, Syngas production via combined steam and carbon dioxide reforming of methane over Ni-Ce/MgAl2O4 catalysts with enhanced coke resistance, Fuel Process. Technol. 119 (2014) 151-157. http://dx.doi.org/10.1016/j.fuproc.2013.11.005 [63] F. Alenazey, C.G. Cooper, C.B. Dave, S.S.E.H. Elnashaie, A.A. Susu, A.A. Adesina, Coke removal from deactivated Co-Ni steam reforming catalyst using different gasifying agents:an analysis of the gas-solid reaction kinetics, Catal. Commun. 10 (4) (2009) 406-411. http://dx.doi.org/10.1016/j.catcom.2008.10.010 [64] S. Vetrivel, J.S. Do, M.Y. Cheng, B.J. Hwang, Simple catalyst for the effective growth of carbon nanotubes by CVD, J. Phys. Chem. C 111 (44) (2007) 16211-16218. http://dx.doi.org/10.1021/jp0727188 [65] J. Vicente, C. Montero, J. Ereña, M.J. Azkoiti, J. Bilbao, A.G. Gayubo, Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor, Int. J. Hydrog. Energy 39 (24) (2014) 12586-12596. http://dx.doi.org/10.1016/j.ijhydene.2014.06.093 |