[1] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review:structure, properties and nanocomposites, Chem. Soc. Rev. 40 (7) (2011) 3941. https://doi.org/10.1039/c0cs00108b [2] W. Schutyser, T. Renders, S. van den Bosch, S.F. Koelewijn, G.T. Beckham, B.F. Sels, Chemicals from lignin:an interplay of lignocellulose fractionation, depolymerisation, and upgrading, Chem. Soc. Rev. 47 (3) (2018) 852-908. https://doi.org/10.1039/c7cs00566k [3] M. Hamza, M. Ayoub, R.B. Shamsuddin, A. Mukhtar, S. Saqib, I. Zahid, M. Ameen, S. Ullah, A.G. Al-Sehemi, M. Ibrahim, A review on the waste biomass derived catalysts for biodiesel production, Environ. Technol. Innov. 21 (2021) 101200. http://dx.doi.org/10.1016/j.eti.2020.101200 [4] A.A. Arpia, W.H. Chen, S.S. Lam, P. Rousset, M.D.G. de Luna, Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating:a comprehensive review, Chem. Eng. J. 403 (2021) 126233. http://dx.doi.org/10.1016/j.cej.2020.126233 [5] B. Ates, S. Koytepe, A. Ulu, C. Gurses, V.K. Thakur, Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources, Chem. Rev. 120 (17) (2020) 9304-9362. https://pubmed.ncbi.nlm.nih.gov/32786427/ [6] Y.C. Li, B. Xing, Y. Ding, X.H. Han, S.R. Wang, A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass, Bioresour. Technol. 312 (2020) 123614. http://dx.doi.org/10.1016/j.biortech.2020.123614 [7] E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D.O. Sulistiono, D. Prasetyoko, Review on recent advances of carbon based adsorbent for methylene blue removal from waste water, Mater. Today Chem. 16 (2020) 100233. http://dx.doi.org/10.1016/j.mtchem.2019.100233 [8] C.C. Qin, H. Wang, X.Z. Yuan, T. Xiong, J.J. Zhang, J. Zhang, Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices, Chem. Eng. J. 382 (2020) 122977. http://dx.doi.org/10.1016/j.cej.2019.122977 [9] E.J. Cho, L.T.P. Trinh, Y. Song, Y.G. Lee, H.J. Bae, Bioconversion of biomass waste into high value chemicals, Bioresour. Technol. 298 (2020) 122386. http://dx.doi.org/10.1016/j.biortech.2019.122386 [10] Y.H. Lu, S.L. Zhang, X.R. Han, X.C. Wan, J.L. Gao, C.C. Bai, Y.X. Li, Z. Ge, L. Wei, Y. Chen, Y.F. Ma, Y.S. Chen, Controlling and optimizing the morphology and microstructure of 3D interconnected activated carbons for high performance supercapacitors, Nanotechnology 32 (8) (2021) 085401. https://doi.org/10.1088/1361-6528/abc98d [11] P.R. Yaashikaa, P. Senthil Kumar, S.J. Varjani, A. Saravanan, Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants, Bioresour. Technol. 292 (2019) 122030. https://pubmed.ncbi.nlm.nih.gov/31455552/ [12] Y.R. Liu, Y. Nie, X.M. Lu, X.P. Zhang, H.Y. He, F.J. Pan, L. Zhou, X. Liu, X.Y. Ji, S.J. Zhang, Cascade utilization of lignocellulosic biomass to high-value products, Green Chem. 21 (13) (2019) 3499-3535. https://doi.org/10.1039/c9gc00473d [13] Y.J. Meng, C.I. Contescu, P.Z. Liu, S.Q. Wang, S.H. Lee, J.J. Guo, T.M. Young, Understanding the local structure of disordered carbons from cellulose and lignin, Wood Sci. Technol. 55 (3) (2021) 587-606. http://dx.doi.org/10.1007/s00226-021-01286-6 [14] G.B. Barin, I. de Fátima Gimenez, L.P. da Costa, A.G.S. Filho, L.S. Barreto, Influence of hydrothermal carbonization on formation of curved graphite structures obtained from a lignocellulosic precursor, Carbon 78 (2014) 609-612. http://dx.doi.org/10.1016/j.carbon.2014.07.017 [15] C. Wang, H.W. Wang, C.X. Yang, B.K. Dang, C.C. Li, Q.F. Sun, A multilevel gradient structural carbon derived from naturally preprocessed biomass, Carbon 168 (2020) 624-632. http://dx.doi.org/10.1016/j.carbon.2020.07.020 [16] S.Y. Li, Y.Y. Xu, X. Jing, G. Yilmaz, D.G. Li, L.S. Turng, Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composites, Compos. B Eng. 196 (2020) 108120. http://dx.doi.org/10.1016/j.compositesb.2020.108120 [17] F.F. Yin, W.J. Yue, Y. Li, S. Gao, C.W. Zhang, H. Kan, H.S. Niu, W.X. Wang, Y.J. Guo, Carbon-based nanomaterials for the detection of volatile organic compounds:a review, Carbon 180 (2021) 274-297. http://dx.doi.org/10.1016/j.carbon.2021.04.080 [18] K.T. Alali, Jing yu, D. Moharram, Q. Liu, R.R. Chen, J.H. Zhu, R.M. Li, P.L. Liu, J.Y. Liu, J. Wang, In situ construction of 3-dimensional hierarchical carbon nanostructure; investigation of the synthesis parameters and hydrogen evolution reaction performance, Carbon 178 (2021) 48-57. http://dx.doi.org/10.1016/j.carbon.2021.03.001 [19] D. Choi, H.S. Kil, S. Lee, Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies, Carbon 142 (2019) 610-649. http://dx.doi.org/10.1016/j.carbon.2018.10.028 [20] I. Aarum, A. Solli, H. Gunnarsson, D. Kalyani, H. Devle, D. Ekeberg, Y. Stenstrøm, Comparison of pyrolyzed lignin before and after milled wood lignin purification of Norway spruce with increasing steam explosion, Wood Sci. Technol. 53 (3) (2019) 601-618. http://dx.doi.org/10.1007/s00226-019-01088-x [21] Y. Eom, S.M. Son, Y.E. Kim, J.E. Lee, S.H. Hwang, H.G. Chae, Structure evolution mechanism of highly ordered graphite during carbonization of cellulose nanocrystals, Carbon 150 (2019) 142-152. http://dx.doi.org/10.1016/j.carbon.2019.05.007 [22] Q. Ye, Z.W. Peng, G.H. Li, Y. Liu, M.D. Liu, L. Ye, L.C. Wang, M.J. Rao, T. Jiang, Rapid microwave-assisted reduction of ferromanganese spinel with biochar:correlation between phase transformation and heating mechanism, J. Clean. Prod. 286 (2021) 124919. http://dx.doi.org/10.1016/j.jclepro.2020.124919 [23] Y. Chen, J.Z. Li, T. Li, L.K. Zhang, F.B. Meng, Recent advances in graphene-based films for electromagnetic interference shielding:review and future prospects, Carbon 180 (2021) 163-184. http://dx.doi.org/10.1016/j.carbon.2021.04.091 [24] N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol. 96 (6) (2005) 673-686. https://pubmed.ncbi.nlm.nih.gov/15588770/ [25] V.B. Agbor, N. Cicek, R. Sparling, A. Berlin, D.B. Levin, Biomass pretreatment:fundamentals toward application, Biotechnol. Adv. 29 (6) (2011) 675-685. https://pubmed.ncbi.nlm.nih.gov/21624451/ [26] H.Y. Bian, M.L. Dong, L.D. Chen, X.L. Zhou, R.B. Wang, L. Jiao, X.X. Ji, H.Q. Dai, On-demand regulation of lignocellulosic nanofibrils based on rapid fractionation using acid hydrotrope:kinetic study and characterization, ACS Sustain. Chem. Eng. 8 (25) (2020) 9569-9577. http://dx.doi.org/10.1021/acssuschemeng.0c02968 [27] L.M. Zheng, P.J. Yu, Y.B. Zhang, P. Wang, W.J. Yan, B.S. Guo, C.X. Huang, Q. Jiang, Evaluating the bio-application of biomacromolecule of lignin-carbohydrate complexes (LCC) from wheat straw in bone metabolism via ROS scavenging, Int. J. Biol. Macromol. 176 (2021) 13-25. http://dx.doi.org/10.1016/j.ijbiomac.2021.01.103 [28] M. Farooq, T. Zou, J.J. Valle-Delgado, M.H. Sipponen, M. Morits, M. Österberg, Well-defined lignin model films from colloidal lignin particles, Langmuir 36 (51) (2020) 15592-15602. https://doi.org/10.1021/acs.langmuir.0c02970 [29] J. Chen, Y.X. Ren, W.Y. Liu, T. Wang, F.E. Chen, Z. Ling, Q. Yong, All-natural and biocompatible cellulose nanocrystals films with tunable supramolecular structure, Int. J. Biol. Macromol. 193 (2021) 1324-1331. http://dx.doi.org/10.1016/j.ijbiomac.2021.10.191 [30] M. Al Aiti, D. Jehnichen, D. Fischer, H. Brünig, G. Heinrich, On the morphology and structure formation of carbon fibers from polymer precursor systems, Prog. Mater. Sci. 98 (2018) 477-551. http://dx.doi.org/10.1016/j.pmatsci.2018.07.004 [31] S. Jin, S. Xin, L.J. Wang, Z.Z. Du, L.N. Cao, J.F. Chen, X.H. Kong, M. Gong, J.L. Lu, Y.W. Zhu, H.X. Ji, R.S. Ruoff, Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries, Adv. Mater. 28 (41) (2016) 9094-9102. https://pubmed.ncbi.nlm.nih.gov/27604953/ [32] C.Y. Lin, Z.H. Zhao, J.B. Niu, Z.H. Xia, Synthesis, properties and applications of 3D carbon nanotube-graphene junctions, J. Phys. D:Appl. Phys. 49 (44) (2016) 443001. https://doi.org/10.1088/0022-3727/49/44/443001 [33] J.J. Guo, J.R. Morris, Y. Ihm, C.I. Contescu, N.C. Gallego, G. Duscher, S.J. Pennycook, M.F. Chisholm, Topological defects:origin of nanopores and enhanced adsorption performance in nanoporous carbon, Small 8 (21) (2012) 3283-3288. https://doi.org/10.1002/smll.201200894 [34] Y.P. Guo, K.F. Yu, Z.C. Wang, H.D. Xu, Effects of activation conditions on preparation of porous carbon from rice husk, Carbon 41 (8) (2003) 1645-1648. http://dx.doi.org/10.1016/S0008-6223(03)00084-8 [35] X. Xiao, B.L. Chen, A direct observation of the fine aromatic clusters and molecular structures of biochars, Environ. Sci. Technol. 51 (10) (2017) 5473-5482. https://pubmed.ncbi.nlm.nih.gov/28399630/ [36] A.A. Abakumov, I.B. Bychko, O.V. Selyshchev, D.R.T. Zahn, X.H. Qi, J.G. Tang, P.E. Strizhak, Catalytic properties of reduced graphene oxide in acetylene hydrogenation, Carbon 157 (2020) 277-285. http://dx.doi.org/10.1016/j.carbon.2019.10.058 [37] J. Rodríguez-Mirasol, T. Cordero, J.J. Rodríguez, High-temperature carbons from kraft lignin, Carbon 34 (1) (1996) 43-52. http://dx.doi.org/10.1016/0008-6223(95)00133-6 [38] W. Thielemans, E. Can, S.S. Morye, R.P. Wool, Novel applications of lignin in composite materials, J. Appl. Polym. Sci. 83 (2) (2002) 323-331. https://doi.org/10.1002/app.2247 [39] Z. Ling, W.Y. Liu, Y.X. Ren, H. Chen, C.X. Huang, C.H. Lai, Q. Yong, Bioinspired manufacturing of oriented polysaccharides scaffolds for strong, optical haze and anti-UV/bacterial membranes, Carbohydr. Polym. 270 (2021) 118328. https://pubmed.ncbi.nlm.nih.gov/34364591/ [40] Y.L. Wang, S.H. Yang, H.Y. Wang, G.S. Wang, X.B. Sun, P.G. Yin, Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber, Carbon 167 (2020) 485-494. http://dx.doi.org/10.1016/j.carbon.2020.06.014 [41] C.X. Wang, Z.R. Jia, S.Q. He, J.X. Zhou, S. Zhang, M.L. Tian, B.B. Wang, G.L. Wu, Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation, J. Mater. Sci. Technol. 108 (2022) 236-243. http://dx.doi.org/10.1016/j.jmst.2021.07.049 [42] T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J. 431 (2022) 133919. http://dx.doi.org/10.1016/j.cej.2021.133919 [43] L. Chai, Y.Q. Wang, N.F. Zhou, Y. Du, X.D. Zeng, S.Y. Zhou, Q.C. He, G.L. Wu, In-situ growth of core-shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorber, J. Colloid Interface Sci. 581 (2021) 475-484. http://dx.doi.org/10.1016/j.jcis.2020.07.102 [44] H. Lv, Z. Yang, B. Liu, G. Wu, Z. Lou, B. Fei, R. Wu, A flexible electromagnetic wave-electricity harvester">, Nat. Commun. 12"> (2021) 834. https://www.nature.com/articles/s41467-021-21103-9%22%3e [45] Z.C. Lou, Q.Y. Wang, Y. Zhang, X.D. Zhou, R. Li, J. Liu, Y.J. Li, H.L. Lv, In-situ formation of low-dimensional, magnetic core-shell nanocrystal for electromagnetic dissipation, Compos. B Eng. 214 (2021) 108744. http://dx.doi.org/10.1016/j.compositesb.2021.108744 [46] Z.C. Lou, R. Li, P. Wang, Y. Zhang, B. Chen, C.X. Huang, C.C. Wang, H. Han, Y.J. Li, Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior, Chem. Eng. J. 391 (2020) 123571. http://dx.doi.org/10.1016/j.cej.2019.123571 [47] Z.C. Lou, W.K. Wang, C.L. Yuan, Y. Zhang, Y.J. Li, L.T. Yang, Fabrication of Fe/C composites as effective electromagnetic wave absorber by carbonization of pre-magnetized natural wood fibers, J. Bioresour. Bioprod. 4 (1) (2019) 43-50. http://dx.doi.org/10.21967/jbb.v4i1.185 [48] C. Zhang, S. Yin, C. Long, B.W. Dong, D.P. He, Q. Cheng, Hybrid metamaterial absorber for ultra-low and dual-broadband absorption, Opt. Express 29 (9) (2021) 14078. https://doi.org/10.1364/oe.423245 [49] Z.C. Lou, Q.Y. Wang, U.I. Kara, R.S. Mamtani, X.D. Zhou, H.Y. Bian, Z.H. Yang, Y.J. Li, H.L. Lv, S. Adera, X.G. Wang, Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers, Nanomicro Lett. 14 (1) (2021) 11. https://pubmed.ncbi.nlm.nih.gov/34862949/ [50] X.D. Liu, X.X. Zhao, J. Yan, Y. Huang, T.H. Li, P.B. Liu, Enhanced electromagnetic wave absorption performance of core-shell Fe3O4@poly(3, 4-ethylenedioxythiophene) microspheres/reduced graphene oxide composite, Carbon 178 (2021) 273-284. http://dx.doi.org/10.1016/j.carbon.2021.03.042 [51] X.H. Liang, G.H. Wang, W.H. Gu, G.B. Ji, Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption, Carbon 177 (2021) 97-106. http://dx.doi.org/10.1016/j.carbon.2021.02.063 [52] H.H. Chen, W.L. Ma, Z.Y. Huang, Y. Zhang, Y. Huang, Y.S. Chen, Graphene-based materials toward microwave and terahertz absorbing stealth technologies, Adv. Opt. Mater. 7 (8) (2019) 1801318. https://doi.org/10.1002/adom.201801318 [53] S. Biswas, I. Arief, S.S. Panja, S. Bose, Electromagnetic screening in soft conducting composite-containing ferrites:the key role of size and shape anisotropy, Mater. Chem. Front. 1 (12) (2017) 2574-2589. https://doi.org/10.1039/c7qm00305f [54] M. Qin, L.M. Zhang, X.R. Zhao, H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber, Adv. Funct. Mater. (2021) 2103436. https://doi.org/10.1002/adfm.202103436 [55] X.K. Lu, D.M. Zhu, X. Li, M.H. Li, Q. Chen, Y.C. Qing, Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption, Adv. Compos. Hybrid Mater. 4 (4) (2021) 946-956. http://dx.doi.org/10.1007/s42114-021-00258-5 |