[1] K. Li, W. Leigh, P. Feron, H. Yu, M. Tade, Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process:Techno-economic assessment of the MEA process and its improvements, Appl. Energy 165 (2016) 648-659 [2] Z. Huang, Z. Deng, J. Ma, Y. Qin, Y. Zhang, Y. Luo, Z. Wu, Comparison of mass transfer coefficients and desorption rates of CO2 absorption into aqueous MEA + ionic liquids solution, Chem. Eng. Res. Des. 117 (2017) 66-72 [3] T. Wang, W. Yu, M. Fang, H. He, Q. Xiang, Q. Ma, M. Xia, Z. Luo, K. Cen, Wetted-wall column study on CO2 absorption kinetics enhancement by additive of nanoparticles, Greenhouse Gas. Sci. Technol. 5 (5) (2015) 682-694 [4] C. Madeddu, M. Errico, R. Baratti, Rigorous modeling of a CO2-MEA stripping system, Chem. Eng. Trans. 57 (2017) 451-456 [5] H. Gao, B. Xu, L. Han, X. Luo, Z. Liang, Mass transfer performance and correlations for CO2 absorption into aqueous blended of DEEA/MEA in a random packed column, AIChE J. 63 (7) (2017) 3048-3057 [6] F.I. Talens-Alesson, The modelling of falling film chemical reactors, Chem. Eng. Sci. 54 (12) (1999) 1871-1881 [7] B. Dabir, M.R. Riazi, H.R. Davoudirad, Modelling of falling film reactors, Chem. Eng. Sci. 51 (11) (1996) 2553-2558 [8] D. Lokhat, A.K. Domah, K. Padayachee, A. Baboolal, D. Ramjugernath, Gas-liquid mass transfer in a falling film microreactor:Effect of reactor orientation on liquid-side mass transfer coefficient, Chem. Eng. Sci. 155 (2016) 38-44 [9] J. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G. Luo, Design and scaling up of microchemical systems:A review, Annu. Rev. Chem. Biomol. Eng. 8 (2017) 285-305 [10] M. Zanfir, A. Gavriilidis, C. Wille, V. Hessel, Carbon dioxide absorption in a falling film microstructured reactor:Experiments and modeling, Ind. Eng. Chem. Res. 44 (6) (2005) 1742-1751 [11] N. Goel, D.Y. Goswami, Experimental verification of a new heat and mass transfer enhancement concept in a microchannel falling film absorber, J. Heat Transfer129 (2) (2007) 154-161 [12] N. Akkarawatkhoosith, A. Kaewchada, A. Jaree, High-throughput CO2 capture for biogas purification using monoethanolamine in a microtube contactor, J. Taiwan Inst. Chem. Eng. 98 (2019) 113-123 [13] P. Sobieszuk, R. Pohorecki, P. Cygański, M. Kraut, F. Olschewski, Marangoni effect in a falling film microreactor, Chem. Eng. J. 164 (1) (2010) 10-15 [14] K. Warmuziński, J. Buzek, J. Podkański, Marangoni instability during absorption accompanied by chemical reaction, Chem. Eng. J. Biochem. Eng. J. 58 (2) (1995) 151-160 [15] J. Buzek, J. Podkański, K. Warmuziński, The enhancement of the rate of absorption of CO2 in amine solutions due to the Marangoni effect, Energy Convers. Manag. 38 (Suppl. 1) (1997) S69-S74 [16] B.R. Fu, M.S. Tsou, C. Pan, Flow-pattern-based correlations for pressure drop during flow boiling of ethanol-water mixtures in a microchannel, Int. J. Heat Mass Transfer 61 (1) (2013) 332-339 [17] Z. Pan, F. Wang, H. Wang, Instability of Marangoni toroidal convection in a microchannel and its relevance with the flowing direction, Microfluid. Nanofluid. 11 (3) (2011) 327-338 [18] H. Kikura, M. Motosuke, S. Wada, Flow visualization using UVP, J. Vis. Soc. Japan 142 (2016) 6-6 [19] K.F. Lam, E. Sorensen, A. Gavriilidis, Review on gas-liquid separations in microchannel devices, Chem. Eng. Res. Des. 91 (10) (2013) 1941-1953 [20] Y. Imai, T. Yamamoto, A. Sekimoto, Y. Okano, R. Sato, Y. Shigeta, Numerical investigation of the nano-scale solutal Marangoni convections, J. Taiwan Inst. Chem. Eng. 98 (2019) 20-26 [21] K. Sun, P. Zhang, Z. Che, T. Wang, Marangoni-flow-induced partial coalescence of a droplet on a liquid/air interface, Phys. Rev. Fluids 3 (2) (2018) 023602 [22] Y. Zhong, Y. Zhuo, Z. Wang, Y. Sha, Marangoni convection induced by simultaneous mass and heat transfer during evaporation of n-heptane/ether binary liquid mixture, Int. J. Heat Mass Transfer 108 (2017) 812-821 [23] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1) (1981) 201-225 [24] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1) (1988) 12-49 [25] D. L. Youngs, Time-dependent multi-material flow with large fluid distortion, Academic Press, New York, 1982 [26] Chakraborty, G. Biswas, P.S. Ghoshdastidar, A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids, Int. J. Heat Mass Transfer 58 (1-2) (2013) 240-259 [27] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (2) (1992) 335-354 [28] E. Sada, H. Kumazawa, M.A. Butt, Gas absorption with complex chemical reaction:Approximate analytical solutions, Can. J. Chem. Eng. 55 (5) (1977) 623-625 [29] S. Freguia, G.T. Rochelle, Modeling of CO2 capture by aqueous monoethanolamine, AIChE J. 49 (7) (2003) 1676-1686 [30] S. Freguia, Modeling of CO2 removal from flue gases with monoethanolamine, M.S. Thesis, Univ of Texas at Austin, America, 2002. [31] A.A. Shapiro, E.H. Stenby, Thermodynamics of the multicomponent vapor-liquid equilibrium under capillary pressure difference, Fluid Phase Equilib. 178 (1-2) (2001) 17-32 [32] D. Fu, Y.F. Xu, L.F. Wang, L.H. Chen, Experiments and model for the surface tension of carbonated monoethanolamine aqueous solutions, Sci. China Chem. 55 (7) (2012) 1467-1473 [33] J.I. Lee, F.D. Otto, A.E. Mather, Equilibrium between carbon dioxide and aqueous monoethanolamine solutions, J. Appl. Chem. Biotechnol. 26 (10) (1976) 541-549 [34] L.F. Chiu, M.H. Li, Heat capacity of alkanolamine aqueous solutions, J. Chem. Eng. Data 44 (6) (1999) 1396-1401 [35] J.B. Haelssig, A.Y. Tremblay, J. Thibault, S.G. Etemad, Direct numerical simulation of interphase heat and mass transfer in multicomponent vapour-liquid flows, Int. J. Heat Mass Transfer 53 (19-20) (2010) 3947-3960 [36] S.D. Kenarsari, D. Yang, G. Jiang, S. Zhang, J. Wang, A.G. Russell, Q. Wei, M. Fan, Review of recent advances in carbon dioxide separation and capture, RSC Adv. 3 (45) (2013) 22739-22773 [37] F.H. Al-Masabi, M. Castier, Simulation of carbon dioxide recovery from flue gases in aqueous 2-amino-2-methyl-1-propanol solutions, Int. J. Greenhouse Gas Control. 5 (6) (2011) 1478-1488 |