[1] Q. Yi, T.T. Liu, X.B. Wang, Y.Y. Shan, X.Y. Li, M.G. Ding, L.J. Shi, H.B. Zeng, Y.C. Wu, One-step multiple-site integration strategy for CO2 capture and conversion into cycli*c carbonates under atmospheric and cocatalyst/metal/solvent-free conditions, Appl. Catal. B Environ. 283 (2021) 119620. http://dx.doi.org/10.1016/j.apcatb.2020.119620 [2] Z.H. Wu, Y. Nan, Y. Zhao, X.Y. Wang, S.Y. Huang, J.F. Shi, Immobilization of carbonic anhydrase for facilitated CO2 capture and separation, Chin. J. Chem. Eng. 28 (11) (2020) 2817-2831. http://dx.doi.org/10.1016/j.cjche.2020.06.002 [3] W. Zhou, Q.W. Deng, G.Q. Ren, L. Sun, L. Yang, Y.M. Li, D. Zhai, Y.H. Zhou, W.Q. Deng, Enhanced carbon dioxide conversion at ambient conditions via a pore enrichment effect, Nat. Commun. 11 (2020) 4481. https://www.nature.com/articles/s41467-020-18154-9 [4] F.F. Li, F. Mocci, X.P. Zhang, X.Y. Ji, A. Laaksonen, Ionic liquids for CO2 electrochemical reduction, Chin. J. Chem. Eng. 31 (2021) 75-93. http://dx.doi.org/10.1016/j.cjche.2020.10.029 [5] Y.Y. Zhang, G.W. Yang, R. Xie, L. Yang, B. Li, G.P. Wu, Scalable, durable, and recyclable metal-free catalysts for highly efficient conversion of CO2 to cyclic carbonates, Angew. Chem. Int. Ed. 59 (51) (2020) 23291-23298. https://doi.org/10.1002/anie.202010651 [6] W.Z. Sun, M.C. Wang, Y.Q. Zhang, W.L. Ding, F. Huo, L. Wei, H.Y. He, Protic vs aprotic ionic liquid for CO2 fixation:a simulation study, Green Energy Environ. 5 (2) (2020) 183-194. http://dx.doi.org/10.1016/j.gee.2020.04.004 [7] Y.X. Wu, Y.C. Ding, J.H. Xu, Y.D. Wang, K. Mumford, G.W. Stevens, W.Y. Fei, Efficient fixation of CO2 into propylene carbonate with[BMIM]Br in a continuous-flow microreaction system, Green Energy Environ. 6 (2) (2021) 291-297. http://dx.doi.org/10.1016/j.gee.2020.04.016 [8] J.W. Lan, Y. Qu, P. Xu, J.M. Sun, Novel HBD-Containing Zn (dobdc) (datz) as efficiently heterogeneous catalyst for CO2 chemical conversion under mild conditions, Green Energy Environ. 6 (1) (2021) 66-74. http://dx.doi.org/10.1016/j.gee.2019.12.005 [9] J. Liu, G.Q. Yang, Y. Liu, D.J. Zhang, X.B. Hu, Z.B. Zhang, Efficient conversion of CO2 into cyclic carbonates at room temperature catalyzed by Al-salen and imidazolium hydrogen carbonate ionic liquids, Green Chem. 22 (14) (2020) 4509-4515. https://doi.org/10.1039/d0gc00458h [10] K. Naveen, H. Ji, T.S. Kim, D. Kim, D.H. Cho, C3-symmetric zinc complexes as sustainable catalysts for transforming carbon dioxide into mono- and multi-cyclic carbonates, Appl. Catal. B Environ. 280 (2021) 119395. http://dx.doi.org/10.1016/j.apcatb.2020.119395 [11] N. Patil, S. Bhoopathi, V. Chidara, N. Hadjichristidis, Y. Gnanou, X.S. Feng, Recycling a borate complex for synthesis of polycarbonate polyols:towards an environmentally friendly and cost-effective process, ChemSusChem 13 (18) (2020) 5080-5087. https://doi.org/10.1002/cssc.202001395 [12] A.J. Kamphuis, F. Picchioni, P.P. Pescarmona, CO2-fixation into cyclic and polymeric carbonates:principles and applications, Green Chem. 21 (3) (2019) 406-448. https://doi.org/10.1039/c8gc03086c [13] R. Babu, A.C. Kathalikkattil, R. Roshan, J. Tharun, D.W. Kim, D.W. Park, Dual-porous metal organic framework for room temperature CO2 fixation via cyclic carbonate synthesis, Green Chem. 18 (1) (2016) 232-242. https://doi.org/10.1039/c5gc01763g [14] T.K. Pal, D. De, P.K. Bharadwaj, Metal-organic frameworks for the chemical fixation of CO2 into cyclic carbonates, Coord. Chem. Rev. 408 (2020) 213173. http://dx.doi.org/10.1016/j.ccr.2019.213173 [15] K.A. Andrea, F.M. Kerton, Triarylborane-catalyzed formation of cyclic organic carbonates and polycarbonates, ACS Catal. 9 (3) (2019) 1799-1809. https://doi.org/10.1021/acscatal.8b04282 [16] J.A. Castro-Osma, K.J. Lamb, M. North, Cr(salophen) complex catalyzed cyclic carbonate synthesis at ambient temperature and pressure, ACS Catal. 6 (8) (2016) 5012-5025. https://doi.org/10.1021/acscatal.6b01386 [17] R.R. Shaikh, S. Pornpraprom, V. D'Elia, Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions, ACS Catal. 8 (1) (2018) 419-450. http://dx.doi.org/10.1021/acscatal.7b03580 [18] D.G. Jia, L. Ma, Y. Wang, W.L. Zhang, J. Li, Y. Zhou, J. Wang, Efficient CO2 enrichment and fixation by engineering micropores of multifunctional hypercrosslinked ionic polymers, Chem. Eng. J. 390 (2020) 124652. http://dx.doi.org/10.1016/j.cej.2020.124652 [19] M.W. Hussain, V. Bhardwaj, A. Giri, A. Chande, A. Patra, Multifunctional ionic porous frameworks for CO2 conversion and combating microbes, Chem. Sci. 11 (2020)7910-7920 [20] W. Hui, X.M. He, X.Y. Xu, Y.M. Chen, Y. Zhou, Z.M. Li, L.Q. Zhang, D.J. Tao, Highly efficient cycloaddition of diluted and waste CO2 into cyclic carbonates catalyzed by porous ionic copolymers, J. CO2 Util. 36 (2020) 169-176. http://dx.doi.org/10.1016/j.jcou.2019.11.003 [21] Y.C. Guo, L. Feng, C.C. Wu, X.M. Wang, X. Zhang, Confined pyrolysis transformation of ZIF-8 to hierarchically ordered porous Zn-N-C nanoreactor for efficient CO2 photoconversion under mild conditions, J. Catal. 390 (2020) 213-223. http://dx.doi.org/10.1016/j.jcat.2020.07.037 [22] Z.Y. Fan, J.J. Wang, W.J. Wang, S. Burger, Z. Wang, Y.M. Wang, C. Wöll, M. Cokoja, R.A. Fischer, Defect engineering of copper paddlewheel-based metal-organic frameworks of type NOTT-100:implementing truncated linkers and its effect on catalytic properties, ACS Appl. Mater. Interfaces 12 (34) (2020) 37993-38002. https://doi.org/10.1021/acsami.0c07249 [23] G.R. Cai, M.L. Ding, Q.Y. Wu, H.L. Jiang, Encapsulating soluble active species into hollow crystalline porous capsules beyond integration of homogeneous and heterogeneous catalysis, Natl. Sci. Rev. 7 (1) (2020) 37-45. https://doi.org/10.1093/nsr/nwz147 [24] Q.H. Yang, C.C. Yang, C.H. Lin, H.L. Jiang, Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion, Angew. Chem. Int. Ed Engl. 58 (11) (2019) 3511-3515. https://pubmed.ncbi.nlm.nih.gov/30569535/ [25] Q. Guo, S.G. Xia, X.B. Li, Y. Wang, F. Liang, Z.S. Lin, C.H. Tung, L.Z. Wu, Flower-like cobalt carbide for efficient carbon dioxide conversion, Chem. Commun. 56 (57) (2020) 7849-7852. https://doi.org/10.1039/d0cc01091j [26] P.Z. Li, X.J. Wang, J. Liu, J.S. Lim, R.Q. Zou, Y.L. Zhao, A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion, J. Am. Chem. Soc. 138 (7) (2016) 2142-2145. http://dx.doi.org/10.1021/jacs.5b13335 [27] J. Liang, Y.Q. Xie, X.S. Wang, Q. Wang, T.T. Liu, Y.B. Huang, R. Cao, An imidazolium-functionalized mesoporous cationic metal-organic framework for cooperative CO2 fixation into cyclic carbonate, Chem. Commun. 54 (4) (2018) 342-345. https://doi.org/10.1039/c7cc08630j [28] Z. Lu, B.G. Guo, Y.L. Zhao, L.X. Hou, L.Q. Xiao, One-step synthesis of cyclic polypyrazole and the self-assembly vesicles driven by hydrogen bond, Chin. Chem. Lett. (2021) http://dx.doi.org/10.1016/j.cclet.2021.07.033 [29] X.F. Zhang, H.T. Liu, P.F. An, Y.N. Shi, J.Y. Han, Z.J. Yang, C. Long, J. Guo, S.L. Zhao, K. Zhao, H.J. Yin, L.R. Zheng, B.H. Zhang, X.P. Liu, L.J. Zhang, G.D. Li, Z.Y. Tang, Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO2 cycloaddition, Sci. Adv. 6 (17) (2020) eaaz4824. https://pubmed.ncbi.nlm.nih.gov/32426463/ [30] Y.P. Song, Q. Sun, P.C. Lan, S.Q. Ma, Secondary sphere effects on porous polymeric organocatalysts for CO2 transformations:subtle modifications resulting in superior performance, ACS Appl. Mater. Interfaces 12 (29) (2020) 32827-32833. https://doi.org/10.1021/acsami.0c08817 [31] Y.F. Sang, J.H. Huang, Benzimidazole-based hyper-cross-linked poly(ionic liquid)s for efficient CO2 capture and conversion, Chem. Eng. J. 385 (2020) 123973. http://dx.doi.org/10.1016/j.cej.2019.123973 |