中国化学工程学报 ›› 2022, Vol. 43 ›› Issue (3): 297-315.DOI: 10.1016/j.cjche.2021.10.026
Muhammad Faizan1,2,1, Yingwei Li1,2, Ruirui Zhang1, Xingsheng Wang1, Piao Song1,2, Ruixia Liu1,2
收稿日期:
2021-09-15
修回日期:
2021-10-18
出版日期:
2022-03-28
发布日期:
2022-04-28
通讯作者:
Ruixia Liu,E-mail:rxliu@ipe.ac.cn
基金资助:
Muhammad Faizan1,2,1, Yingwei Li1,2, Ruirui Zhang1, Xingsheng Wang1, Piao Song1,2, Ruixia Liu1,2
Received:
2021-09-15
Revised:
2021-10-18
Online:
2022-03-28
Published:
2022-04-28
Contact:
Ruixia Liu,E-mail:rxliu@ipe.ac.cn
Supported by:
摘要: The utilization of lighter alkanes into useful chemical products is essential for modern chemistry and reducing the CO2 emission. Particularly, n-butane has gained special attention across the globe due to the abundant production of maleic anhydride (MA). Vanadium phosphorous oxide (VPO) is the most effective catalyst for selective oxidation of n-butane to MA so far. Interestingly, the VPO complex exists in more or less fifteen different structures, each one having distinct phase composition and exclusive surface morphology and physiochemical properties such as valence state, lattice oxygen, acidity etc., which relies on precursor preparation method and the activation conditions of catalysts. The catalytic performance of VPO catalyst is improved by adding different promoters or co-catalyst such as various metals dopants, or either introducing template or structural-directing agents. Meanwhile, new preparation strategies such as electrospinning, ball milling, hydrothermal, barothermal, ultrasound, microwave irradiation, calcination, sol–gel method and solvothermal synthesis are also employed for introducing improvement in catalytic performance. Research in above-mentioned different aspects will be ascribed in current review in addition to summarizing overall catalysis activity and final yield. To analyze the performance of the catalytic precursor, the reaction mechanism and reaction kinetics both are discussed in this review to help clarify the key issues such as strong exothermic reaction, phosphorus supplement, water supplement, deactivation, and air/n-butane pretreatment etc. related to the various industrial applications of VPO.
Muhammad Faizan, Yingwei Li, Ruirui Zhang, Xingsheng Wang, Piao Song, Ruixia Liu. Progress of vanadium phosphorous oxide catalyst for n-butane selective oxidation[J]. 中国化学工程学报, 2022, 43(3): 297-315.
Muhammad Faizan, Yingwei Li, Ruirui Zhang, Xingsheng Wang, Piao Song, Ruixia Liu. Progress of vanadium phosphorous oxide catalyst for n-butane selective oxidation[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 297-315.
[1] G. Mestl, D. Lesser, T. Turek, Optimum Performance of Vanadyl Pyrophosphate Catalysts, Topi. Catal. 59 (2016) 1533-1544 [2] F. Dai, Z. Li, X. Chen, B. He, R. Liu, S. Zhang, Synthesis of vanadium phosphorus oxide catalysts promoted by iron-based ionic liquids and their catalytic performance in selective oxidation of n-butane, Catal. Sci. & Tech. 8 (2018) 4515-4525 [3] M. Garside, Global production capacity of maleic anhydride 2018-2023, 2019. Available online:www.statista.com (accessed on 15 April 2021). [4] P.V. Mangili, D.M. Prata, Preliminary design of sustainable industrial process alternatives based on eco-efficiency approaches:The maleic anhydride case study, Chem. Eng. Sci. 212 (2020) 115313 [5] Y.H. Taufiq-Yap, Effect of Cr and Co Promoters Addition on Vanadium Phosphate Catalysts for Mild Oxidation of n-Butane, J. Natural Gas Chem. 15 (2006) 144-148 [6] Y. Kamiya, Y. Kijima, T. Ohkura, A. Satsuma, T. Hattori, Y. Kamiya, Y. Kijima, T. Ohkura, A. Satsuma, T. Hattori, Selective oxidation of Selective oxidation of n- butane over iron- doped vanadyl pyrophosphate prepared from lamellar vanadyl n- hexylphosphate 253 (2003) 1-13. butane over iron- doped vanadyl pyrophosphate prepared from lamellar vanadyl, n-hexylphosphate 253 (2003) 1-13 [7] G.J. Hutchings, Effect of promoters and reactant concentration on the selective oxidation of n-butane to maleic anhydride using vanadium phosphorus oxide catalysts, App. Catal. 72 (1991) 1-32 [8] N. Ballarini, F. Cavani, C. Cortelli, S. Ligi, F. Pierelli, F. Trifirò, C. Fumagalli, G. Mazzoni, T. Monti, VPO catalyst for n-butane oxidation to maleic anhydride:A goal achieved, or a still open challenge?, Topi. Catal. 38 (2006) 147-156 [9] E. Bordes, Crystallochemistry of V-P-O phases and application to catalysis, Catal. Today 1 (1987) 499-526 [10] L.K. Leong, K.S. Chin, Y.H. Taufiq-Yap, The effect of Bi promoter on vanadium phosphate catalysts synthesized via sesquihydrate route, Catal. Today 164 (2011) 341-346 [11] G.J. Hutchings, Heterogeneous catalysts-discovery and design, J. Mater. Chem. 19 (2009) 1222-1235 [12] V.V. Guliants, J.B. Benziger, S. Sundaresan, I.E. Wachs, J.M. Jehng, J.E. Roberts, The effect of the phase composition of model VPO catalysts for partial oxidation of n-butane, Catal. Today 28 (1996) 275-295 [13] W. O'Leary, W. Goddard, M.-J. Cheng, The Dual-Phase Mechanism for the Catalytic Conversion of n-Butane to Maleic Anhydride by the Vanadyl Pyrophosphate Heterogeneous Catalyst, J. Phy. Chem. C 121 (2017) 24069-24076 [14] C. Schulz, S.C. Roy, K. Wittich, R.N. d'Alnoncourt, S. Linke, V.E. Strempel, B. Frank, R. Glaum, F. Rosowski, αII-(V1-xWx)OPO4 catalysts for the selective oxidation of n-butane to maleic anhydride, Catal. Today 333 (2019) 113-119 [15] Y.H. Taufiq-Yap, S.N. Asrina, G.J. Hutchings, N.F. Dummer, J.K. Bartley, Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane, J. Natural Gas Chem. 20 (2011) 635-638 [16] X.-B. Fan, N.F. Dummer, S.H. Taylor, J.K. Bartley, G.J. Hutchings, Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols, Catal. Today 183 (2012) 52-57 [17] G.C. Behera, K.M. Parida, D.P. Das, Facile fabrication of aluminum-promoted vanadium phosphate:A highly active heterogeneous catalyst for isopropylation of toluene to cymene, J. Catal. 289 (2012) 190-198 [18] N.F. Dummer, J.K. Bartley, G.J. Hutchings, Vanadium phosphate materials as selective oxidation catalysts, in:B.C. Gates, H. Knozinger (Eds.), Adv. Catal. 54 (2011) 189-247 [19] T. Zhang, R. Zhang, Y. Zhang, Z. Xie, Y. Li, H. Wu, F. Dai, R. Liu, Phosphoric Acid:A Key Role in Control of Structure and Properties of Vanadium Phosphorus Oxide Catalysts During Synthesis, ChemistrySelect 6 (2021) 513-521 [20] B. He, Z. Li, H. Zhang, F. Dai, K. Li, R. Liu, S. Zhang, Synthesis of Vanadium Phosphorus Oxide Catalysts Assisted by Deep-Eutectic Solvents for n-Butane Selective Oxidation, Ind. & Eng. Chem. Res. 58 (2019) 2857-2867 [21] B. He, Y. Li, T. Zhang, Y. Shi, K. Li, F. Dai, R. Zhang, R. Liu, S. Zhang, Synthesis of Porous and Highly Crystallinity Vanadium Phosphorus Oxide Catalysts by Multifunctional Biomass-Based Deep Eutectic Solvents, The Journal of Physical Chemistry B 124 (2020) 3743-3753 [22] Y. Shi, F. Dai, T. Zhang, B. He, R. Zhang, R. Liu, B. Ren, Hydroxyl-Rich Deep Eutectic Solvents Assistant Synthesis of VPO and Its Application in Selective Oxidation of n-Butane, ChemistrySelect 5 (2020) 6907-6917 [23] J.K. Bartley, R.P.K. Wells, G.J. Hutchings, The Unexpected Role of Aldehydes and Ketones in the Standard Preparation Method for Vanadium Phosphate Catalysts, J. Catal. 195 (2000) 423-427 [24] G.J. Hutchings, J.A. Lopez-Sanchez, J.K. Bartley, J.M. Webster, A. Burrows, C.J. Kiely, A.F. Carley, C. Rhodes, M. Hävecker, A. Knop-Gericke, R.W. Mayer, R. Schlögl, J.C. Volta, M. Poliakoff, Amorphous Vanadium Phosphate Catalysts Prepared Using Precipitation with Supercritical CO2 as an Antisolvent, J. Catal. 208 (2002) 197-210 [25] D. Yang, C. Sararuk, K. Suzuki, Z. Li, C. Li, Effect of calcination temperature on the catalytic activity of VPO for aldol condensation of acetic acid and formalin, Chem. Engr. J. 300 (2016) 160-168 [26] E. Bordes, P. Courtine, Some selectivity criteria in mild oxidation catalysis:V-P-O phases in butene oxidation to maleic anhydride, J. Catal. 57 (1979) 236-252 [27] M.A. Carreon, V.V. Guliants, Synthesis and characterization of mesostructured vanadium-phosphorus-oxide phases, in:A. Sayari, M. Jaroniec (Eds.), Studies in Surface Science and Catalysis, Elsevier, 2002, 301-308. [28] Y. Takita, T. Hashiguchi, H. Matsunosako, The vapor-phase preparation of V-P-O catalysts effective for butane oxidation to maleic anhydride, Bull. Chem. Soc.Jap. 61 (1988) 3737-3739 [29] Wang, Hai-Bo, Wan, Hui-Lin, Yang, Mei-Hua, Li, Jian-Hui, Weng, Wei-Zheng, Samarium-modified vanadium phosphate catalyst for the selective oxidation of n-butane to maleic anhydride, App. Sur. Sci. 351 (2015) 243-249 [30] V.V. Guliants, J.B. Benziger, S. Sundaresan, I.E. Wachs, Molecular structure-reactivity relationships in n-butane oxidation over bulk VPO and supported vanadia catalysts:Lessons for molecular engineering of new selective catalysts for alkane oxidation, in:A. Corma, F.V. Melo, S. Mendioroz, J.L.G. Fierro (Eds.) Studies in Surface Sci. Catal. Elsevier (2000) 1721-1726. [31] A.M. Duarte de Farias, W.d.A. Gonzalez, P.G. Pries de Oliveira, J.-G. Eon, J.-M. Herrmann, M. Aouine, S. Loridant, J.-C. Volta, Vanadium Phosphorus Oxide Catalyst Modified by Niobium Doping for Mild Oxidation of n-Butane to Maleic Anhydride, J. Catal. 208 (2002) 238-246 [32] C.K. Goh, Y.H. Taufiq-Yap, G.J. Hutchings, N. Dummer, J. Bartley, Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride, Catal. Today 131 (2008) 408-412 [33] Y.H. Taufiq-Yap, A. Sairi, G. Hutchings, N. Dummer, J.K. Bartley, Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane, J. Natural Gas Chem. 20 (2011) 635-638 [34] S. Shen, J. Zhou, F. Zhang, L. Zhou, R. Li, Effect of Ce-Fe oxides additives on performance of VPO catalyst for n-butane oxidation to maleic anhydride in the absence of gas-phase oxygen, Catal. Today 74 (2002) 37-43 [35] Y.H. Taufiq-Yap, K.P. Tan, K.C. Waugh, M.Z. Hussein, I. Ramli, M.B.A. Rahman, Bismuth-modified vanadyl pyrophosphate catalysts, Catal. Lettr. 89 (2003) 87-93 [36] H. You, H. Lu, G. He, D. Liu, L. Sun, X. Liu, Selective Oxidation of C_4 Hydrocarbons to Maleic Anhydride over Bi-Doped VPO Catalysts, Petrochem. Tech. 39 (2010) 872-878 [37] V.V. Guliants, J.B. Benziger, S. Sundaresan, I.E. Wachs, A.M. Hirt, Effect of promoters for n-butane oxidation to maleic anhydride over vanadium-phosphorus-oxide catalysts:comparison with supported vanadia catalysts, Catal. Lettr. 62 (1999) 87-91 [38] Y.H. Taufiq-Yap, N.M. Nurul Suziana, M.Z. Hussein, Influences of the Various Metal Dopants for the Nanosized Vanadium Phosphate Catalysts, Catal. Lettr. 141 (2011) 136-148 [39] J. Liu, F. Wang, Z. Gu, X. Xu, Vanadium phosphorus oxide catalyst modified by silver doping for mild oxidation of styrene to benzaldehyde, Chem. Eng. J. 151 (2009) 319-323 [40] S. Irusta, A. Boix, B. Pierini, C. Caspani, J. Petunchi, Effect of Mo on the Active Sites of VPO Catalysts upon the Selective Oxidation of n-Butane, J. Catal. 187 (1999) 298-310 [41] M. Faizan, K.U.K. Niazi, H. Nawaz, N. Muhammad, H. Li, F. Dai, R. Zhang, R. Liu, S. Zhang, Mono-, Bi-, and Tri-Metallic DES Are Prepared from Nb, Zr, and Mo for n-Butane Selective Oxidation via VPO Catalyst, Processes 9 (2021) 1487 [42] C.W. Yee, Y.H. Taufiq-Yap, Nanostructured of Vanadium Phosphorus Oxide (Vpo) Catalyst Prepared by Sonochemical Treatment, Adv. Matr. Resrch. 364 (2012) 25-29 [43] Q. Jiang, J. Zhao, X.K. Li, W.J. Ji, Z.B. Zhang, C.T. Au, Water modification of PEG-derived VPO for the partial oxidation of propane, App. Catal. A:Gen. 341 (2008) 70-76 [44] M.A. Carreon, V.V. Guliants, F. Pierelli, F. Cavani, Ordered Mesostructured Mixed Metal Oxides:Microporous VPO Phases for n-Butane Oxidation to Maleic Anhydride, Catal. Lettr. 92 (2004) 11-16 [45] L. O'Mahony, D. Zemlyanov, M.E. Smith, B.K. Hodnett, Crystallisation of VOHPO4·0.5H2O in the presence of a surfactant, App. Catal. A:Gen. 251 (2003) 327-335 [46] M.A. Carreon, V.V. Guliants, Phase transformations in mesostructured vanadium-phosphorus-oxides, Catal. Today 78 (2003) 303-310 [47] T. Abe, A. Taguchi, M. Iwamoto, Non-silica-based mesostructured materials. 1. Synthesis of vanadium oxide-based materials, Chem. Mater. 7 (1995) 1429-1430 [48] M.A. Carreon, V.V. Guliants, Mesostructured vanadium-phosphorus-oxide phases, Micropor. Mesopor. Mater. 55 (2002) 297-304 [49] M.A. Carreon, V.V. Guliants, Hierarchical design of mixed metal oxides:novel macroporous VPO phases, Chem. Comm. (2001) 1438-1439 [50] J. Muzart, Ionic Liquids as Solvents for Catalyzed Oxidations of Organic Compounds, Adv. Syn. & Catal. 348 (2006) 275-295 [51] C. Dai, J. Zhang, C. Huang, Z. Lei, Ionic Liquids in Selective Oxidation:Catalysts and Solvents, Chem Rev 117 (2017) 6929-6983 [52] Y. Qiao, W. Ma, N. Theyssen, C. Chen, Z. Hou, Temperature-Responsive Ionic Liquids:Fundamental Behaviors and Catalytic Applications, Chem Rev 117 (2017) 6881-6928 [53] F. Dai, Y. Shi, T. Zhang, M. Faizan, Z. Li, R. Zhang, R. Liu, S. Zhang, Phosphorus-Based Ionic Liquid as Dual Function Promoter Oriented Synthesis of Efficient VPO Catalyst for Selective Oxidation of n-butane, Catal. Lettr. 151 (2021) 255-266 [54] K. Li, B. He, J.C. Liu, H.L. Zhang, R.R. Zhang, R.X. Liu, Y.F. Song, S.J. Zhang, Synergistic interaction of anions and cations in preparation of VPO catalysts promoted by polyoxometalate-ionic liquids, Appl. Catal. A-Gen. 582 (2019) 9 [55] K. Li, Y. Li, Z. Xie, X. Tan, X. Zhang, R. Liu, Y.-F. Song, S. Zhang, Ionic Liquids Achieve the Exfoliation of Ultrathin Two-Dimensional VOPO4·2H2O Crystalline Nanosheets:Implications on Energy Storage and Catalysis, ACS App. Nano Matrs. 4 (2021) 2503-2514 [56] Y. Zhu, L. Peng, D. Chen, G. Yu, Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets:Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage, Nano Letters 16 (2016) 742-747 [57] C. Wu, X. Lu, L. Peng, K. Xu, X. Peng, J. Huang, G. Yu, Y. Xie, Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors, Nature Comm. 4 (2013) 2431 [58] Borah, Parijat, Datta, Arunabha, Nguyen, Kim, Truc, Zhao, Yanli, VOPO4·2H2O encapsulated in graphene oxide as a heterogeneous catalyst for selective hydroxylation of benzene to phenol, Green Chemistry 18 (2016) 397-401 [59] K.-Z. Goo, Y.-H. Yap, K.-S. Lin, L.-K. Leong, Effect of direct ultrasound synthesis via a sesquihydrate route on bismuth-promoted vanadyl pyrophosphate catalysts, J. Chinese Chem. Soc. 67 (2020) 94-102 [60] Z. Zhang, J. Guo, J. Fu, L. Zheng, D. Zhu, Y. Xu, Y. Song, Hydrothermal Syntheses and Crystal Structures of Two New Vanadium Phosphates, J. Clust. Sci. 23 (2012) 177-187 [61] A.A. Rownaghi, Y.H. Taufiq-Yap, Novel Synthesis Techniques for Preparation of Ultrahigh-Crystalline Vanadyl Pyrophosphate as a Highly Selective Catalyst for n-Butane Oxidation, Ind. & Eng. Chem. Res. 49 (2010) 2135-2143 [62] M.T. Nguyen Dinh, T.L. Nguyen, M.D. Phan, L. Nguyen Dinh, Q.D. Truong, E. Bordes-Richard, Control of the crystal morphology of VOHPO4·0.5H2O precursors prepared via light alcohols-assisted solvothermal synthesis and influence on the selective oxidation of n-butane, J. Catal. 377 (2019) 638-651 [63] V.A. Zazhigalov, E.A. Diyuk, Barothermal Synthesis and Catalytic Properties of Vanadium-Phosphorus Oxide Systems in Oxidative Transformations of Butane and Ethane, Theoreti.Experim. Chem. 54 (2018) 66-72 [64] J. Salazar, K. Hohn, Partial Oxidation of n-Butane over a Sol-Gel Prepared Vanadium Phosphorous Oxide, Catalysts 3 (2013) 11-26 [65] R. Berenguer, M.O. Guerrero-Pérez, I. Guzmán, J. Rodríguez-Mirasol, T. Cordero, Synthesis of Vanadium Oxide Nanofibers with Variable Crystallinity and V5+/V4+ Ratios, ACS Omega 2 (2017) 7739-7745 [66] R. Berenguer, J. Fornells, F.J. Garcia-Mateos, M.O. Guerrero-Perez, J. Rodriguez-Mirasol, T. Cordero, Novel Synthesis Method of porous VPO catalysts with fibrous structure by Electrospinning, Catal. Today 277 (2016) 266-273 [67] J.R.J.H.a.Y.C.W. Y.H. Taufiq-Yap, Synthesis of Nanostructured Vanadium Phosphate Catalysts using Sonochemical Route for Partial Oxidation of n-Butane, J. App. Sci. 11 (2011) 2370-2375 [68] U.R. Pillai, E. Sahle-Demessie, R.S. Varma, Alternative routes for catalyst preparation:use of ultrasound and microwave irradiation for the preparation of vanadium phosphorus oxide catalyst and their activity for hydrocarbon oxidation, App. Catal. A:Gen. 252 (2003) 1-8 [69] L. Zeng, H. Jiang, J. Niu, The study of L-VPO catalysts prepared by microwave methods, J. Mol. Cata. A:Chem. 232 (2005) 119-122 [70] S. Hamzehlouia, J. Shabanian, M. Latifi, J. Chaouki, Effect of microwave heating on the performance of catalytic oxidation of n-butane in a gas-solid fluidized bed reactor, Chem. Eng. Sci. 192 (2018) 1177-1188 [71] Y.H. Taufiq-Yap, A.A. Rownaghi, M.Z. Hussein, R. Irmawati, Preparation of Vanadium Phosphate Catalysts from VOPO4·2H2O:Effect of Microwave Irradiation on Morphology and Catalytic Property, Catal. Lettr. 119 (2007) 64-71 [72] A.A. Rownaghi, T.-Y.Y. Hin, T.W. Jiunn, Influence of the Ethylene Glycol, Water Treatment and Microwave Irradiation on the Characteristics and Performance of VPO Catalysts for n-Butane Oxidation to Maleic Anhydride, Catal. Lettr. 130 (2009) 593-603 [73] X. Wang, L. Xu, X. Chen, W. Ji, Q. Yan, Y. Chen, Novel modifications in preparing vanadium phosphorus oxides and their applications for partial oxidation of n-butane, J. Mol. Cata. A:Chem. 206 (2003) 261-268 [74] G.J. Hutchings, R. Higgins, Selective oxidation of n-butane to maleic anhydride with vanadium phosphorus catalysts prepared by comminution in the presence of dispersants, App. Catal. A:Gen. 154 (1997) 103-115 [75] G.J. Hutchings, Vanadium phosphate:a new look at the active components of catalysts for the oxidation of butane to maleic anhydride, J. Mater. Chem. 14 (2004) 3385-3395 [76] G. Centi, F. Cavani, F. Trifirò, Selective oxidation by heterogeneous catalysis. Fundamental and applied catalysis, Kluwer Acad./Plen, Publish.:New York (2001) 363-495 [77] G. Busca, G. Centi, F. Trifiro, Nature of the active sites for alkane-selective oxidation on vanadium-phosphorus oxides, J. Am. Chem. Soc. 107 (1985) 7757-7758 [78] V.V. Guliants, M.A. Carreon, V.V. Guliants, M.A. Carreon, Vanadium-phosphorus-oxides:From fundamentals of Vanadium-phosphorus-oxides:From fundamentals of n- Butane oxidation to synthesis of new phases, in:J.J. Spivey (Ed.) Catalysis:Volume 18, Royal Soc. Chem. (2005) 1-45. butane oxidation to synthesis of new phases, in:J.J. Spivey (Ed.), Royal Soc. Chem. Volume (2005) 1-45. 18, [79] F. Ivars-Barceló, G.J. Hutchings, J.K. Bartley, S.H. Taylor, P. Sutter, P. Amorós, R. Sanchis, B. Solsona, Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane, J. Catal. 354 (2017) 236-249 [80] P. Wang, G. Fu, H. Wan, How High Valence Transition Metal Spreads Its Activity over Nonmetal Oxoes:A Proof-of-Concept Study, ACS Catal. 7 (2017) 5544-5548 [81] G. Centi, F. Trifiro, J.R. Ebner, V.M. Franchetti, Mechanistic aspects of maleic anhydride synthesis from C4 hydrocarbons over phosphorus vanadium oxide, Chem. Rev. 88 (1988) 55-80 [82] J. Védrine, Heterogeneous Catalytic Oxidation, Fundamental and Technological Aspects of the Selective and Total Oxidation of Organic Compounds, App. Catal. A:Gen. 209 (2001) 429 [83] K. Aït-Lachgar, A. Tuel, M. Brun, J.M. Herrmann, J.M. Krafft, J.R. Martin, J.C. Volta, M. Abon, Selective oxidation of n-butane to maleic anhydride on vanadyl pyrophosphate:II. Characterization of the oxygen-treated catalyst by electrical conductivity, Raman, XPS, and NMR spectroscopic techniques, J. Catal. 177 (1998) 224-230 [84] F. Dury, M.A. Centeno, E.M. Gaigneaux, P. Ruiz, Interaction of N2O (as gas dope) with nickel molybdate catalysts during the oxidative dehydrogenation of propane to propylene, App. Catal. A:Gen. 247 (2003) 231-246 [85] G.I. Panov, K.A. Dubkov, E.V. Starokon, Active oxygen in selective oxidation catalysis, Catal. Today 117 (2006) 148-155 [86] M. Davis, R. Davis, Fundamentals of chemical reaction engineering, McGraw-Hill, 2003 [87] C. Doornkamp, V. Ponec, The universal character of the Mars and Van Krevelen mechanism, J. Mol. Cata. A:Chem. 162 (2000) 19-32 [88] F. Cavani, D. De Santi, S. Luciani, A. Löfberg, E. Bordes-Richard, C. Cortelli, R. Leanza, Transient reactivity of vanadyl pyrophosphate, the catalyst for n-butane oxidation to maleic anhydride, in response to in-situ treatments, App. Catal. A:Gen. 376 (2010) 66-75 [89] V.D.B.C. Dasireddy, M. Huš, B. Likozar, Effect of O2, CO2 and N2O on Ni-Mo/Al2O3 catalyst oxygen mobility in n-butane activation and conversion to 1,3-butadiene, Catal. Sci. & Tech. 7 (2017) 3291-3302 [90] V.A. Zazhigalov, J. Haber, J. Stoch, I.V. Bacherikova, G.A. Komashko, A.I. Pyatniskaya, n-Butane oxidation on V-P-O catalysts. Influence of alkali and alkaline-earth metal ions as additions, App. Catal. A:Gen. 134 (1996) 225-237 [91] D. Wang, M.A. Barteau, Differentiation of Active Oxygen Species for Butane Oxidation on Vanadyl Pyrophosphate, Catal. Lettr. 90 (2003) 7-11 [92] M.-J. Cheng, W.A. Goddard, R. Fu, The Reduction-Coupled Oxo Activation (ROA) Mechanism Responsible for the Catalytic Selective Activation and Functionalization of n-Butane to Maleic Anhydride by Vanadium Phosphate Oxide, Topi. Catal. 57 (2014) 1171-1187 [93] M.J. Cheng, W.A. Goddard, 3rd, The critical role of phosphate in vanadium phosphate oxide for the catalytic activation and functionalization of n-butane to maleic anhydride, J. Am. Chem. Soc. 135 (2013) 4600-4603 [94] M.T. Sananes-Schulz, A. Tuel, G.J. Hutchings, J.C. Volta, The V4+/V5+Balance as a Criterion of Selection of Vanadium Phosphorus Oxide Catalysts forn-Butane Oxidation to Maleic Anhydride:A Proposal to Explain the Role of Co and Fe Dopants, J. Catal. 166 (1997) 388-392 [95] F. Cavani, S. Ligi, T. Monti, F. Pierelli, F. Trifirò, S. Albonetti, G. Mazzoni, Relationship between structural/surface characteristics and reactivity in n-butane oxidation to maleic anhydride:The role of V3+ species, Catal. Today 61 (2000) 203-210 [96] G.F. Benabdelouahab, J.C. Volta, R. Olier, New Insights into VOPO4 Phases Through Their Hydration, J. Catal. 148 (1994) 334-340 [97] P. Gruene, T. Wolfram, K. Pelzer, R. Schlögl, A. Trunschke, Role of dispersion of vanadia on SBA-15 in the oxidative dehydrogenation of propane, Catal. Today 157 (2010) 137-142 [98] L. Tessier, E. Bordes, M. Gubelmann-Bonneau, Active specie on vanadium-containing catalysts for the selective oxidation of ethane to acetic acid, Catal. Today 24 (1995) 335-340 [99] H.-Y. Wu, P. Jin, Y.-f. Sun, M.-H. Yang, C.-J. Huang, W.-Z. Weng, H.-L. Wan, Enhancing catalytic performance of phosphorus-modified ceria supported VPO catalysts for n-butane oxidation, J. Mol. Cata. A:Chem. 414 (2016) 1-8 [100] D. Lesser, G. Mestl, T. Turek, Transient behavior of vanadyl pyrophosphate catalysts during the partial oxidation of n-butane in industrial-sized, fixed bed reactors, App. Catal. A:Gen. 510 (2016) 1-10 [101] T. Ueki, M. Watanabe, T.P. Lodge, Doubly Thermosensitive Self-Assembly of Diblock Copolymers in Ionic Liquids, Macromol. 42 (2009) 1315-1320 [102] F. Trifirò, Key properties of V-P mixed oxides in selective oxidation of C4 and C5 n-Paraffins, Catal. Today 16 (1993) 91-98 [103] V. Paunović, G. Zichittella, M. Moser, A.P. Amrute, J. Pérez-Ramírez, Catalyst design for natural-gas upgrading through oxybromination chemistry, Nat. Chem. 8 (2016) 803-809 [104] G. Busca, G. Centi, F. Trifiro, V. Lorenzelli, Surface acidity of vanadyl pyrophosphate, active phase in n-butane selective oxidation, J.Phy. Chem. 90 (1986) 1337-1344 [105] B.K. Hodnett, Vanadium-Phosphorus Oxide Catalysts for the Selective Oxidation of C4 Hydrocarbons to Maleic Anhydride, Catal. Rev. 27 (1985) 373-424 [106] X. Guo, D. Yang, C. Zuo, Z. Peng, C. Li, S. Zhang, Catalysts, Process Optimization, and Kinetics for the Production of Methyl Acrylate over Vanadium Phosphorus Oxide Catalysts, Ind. & Eng. Chem. Res. 56 (2017) 5860-5871 [107] J. Liu, P. Xu, P. Wang, Z. Xu, X. Feng, W. Ji, C.-T. Au, Vanadium Phosphorus Oxide/Siliceous Mesostructured Cellular Foams:efficient and selective for sustainable acrylic acid production via condensation route, Scient. Rep. 9 (2019) 16988 [108] J.K. Bartley, J.A. Lopez-Sanchez, G.J. Hutchings, Preparation of vanadium phosphate catalysts using water as solvent, Catal. Today 81 (2003) 197-203 [109] A.A. Rownaghi, Y.H. Taufiq-Yap, F. Rezaei, High Surface Area Vanadium Phosphate Catalysts for n-Butane Oxidation, Ind. & Eng. Chem. Res. 48 (2009) 7517-7528 [110] M.A. Carreon, V.V. Guliants, Macroporous Vanadium Phosphorus Oxide Phases Displaying Three-Dimensional Arrays of Spherical Voids, Chem. Mater. 14 (2002) 2670-2675 [111] W. Chu, J. Luo, S. Paul, Y. Liu, A. Khodakov, E. Bordes, Synthesis and performance of vanadium-based catalysts for the selective oxidation of light alkanes, Catal. Today 298 (2017) 145-157 [112] P.G. Pries de Oliveira, J.G. Eon, M. Chavant, A.S. Riché, V. Martin, S. Caldarelli, J.C. Volta, Modification of vanadium phosphorus oxides used for n-butane oxidation to maleic anhydride by interaction with niobium phosphate, Catal. Today 57 (2000) 177-186 [113] S. Zeyß, G. Wendt, K.-H. Hallmeier, R. Szargan, G. Lippold, Influence of zirconium phosphate on the properties of (VO)2P2O7 catalysts for the selective oxidation of n-butane to maleic anhydride, J. Chem.l Soc., Faraday Trans. 92 (1996) 3273-3279 [114] M. Abon, J.M. Herrmann, J.C. Volta, Correlation with the redox V5+/V4+ ratio in vanadium phosphorus oxide catalysts for mild oxidation of n-butane to maleic anhydride, Catal. Today 71 (2001) 121-128 [115] J.-M. Herrmann, P. Vernoux, K.E. Béré, M. Abon, In SituStudy of Redox and of p-Type Semiconducting Properties of Vanadyl Pyrophosphate and of V-P-O Catalysts during the Partial Oxidation ofn-Butane to Maleic Anhydride, J. Catal. 167 (1997) 106-117 [116] Z.-Y. Xue, G.L. Schrader, Transient FTIR Studies of the Reaction Pathway forn-Butane Selective Oxidiation over Vanadyl Pyrophosphate, J. Catal. 184 (1999) 87-104 [117] W.M. Brandstädter, W.M. Brandstädter, Partial oxidation of Raffinate II and other mixtures of Partial Oxidation of Raffinate II and Other Mixtures of n- Butane and n- Butenes to maleic anhydride in a fixed-bed reactor, 2008. Butenes to Maleic Anhydride in a Fixed-bed, Reactor, Dissertation, Karlsruhe University, Karlsruhe (2008), doi:http://dx.doi.org/10.5445/ksp/1000007336. [118] R.K. Sharma, D.L. Cresswell, E.J. Newson, Kinetics and fixed-bed reactor modeling of butane oxidation to maleic anhydride, AIChE J. 37 (1991) 39-47 [119] R.M. Contractor, Dupont's CFB technology for maleic anhydride, Chem. Eng. Sci. 54 (1999) 5627-5632 [120] M. Müller, M. Kutscherauer, S. Böcklein, G. Mestl, T. Turek, On the importance of by-products in the kinetics of n-butane oxidation to maleic anhydride, Chem. Eng. J. (2020) 126016 [121] J.T. Gleaves, J.R. Ebner, T.C. Kuechler, Temporal Analysis of Products (TAP)-A Unique Catalyst Evaluation System with Submillisecond Time Resolution, Catal. Rev. 30 (1988) 49-116 [122] M. Witko, R. Tokarz, J. Haber, K. Hermann, Electronic structure of vanadyl pyrophosphate:cluster model studies, J. Mol. Cata. A:Chem. 166 (2001) 59-72 [123] A. Haras, M. Witko, D. Salahub, H. Duarte, Chemical nature of point defects at the (VO)2P2O7(100) surface, Surf. Sci. 538 (2003) 160-170 [124] D.J. Thompson, I.M. Ciobıcă, B.K. Hodnett, R.A. van Santen, M.O. Fanning, A DFT periodic study of the vanadyl pyrophosphate (100) surface, Surf. Sci. 547 (2003) 438-451 [125] D.J. Thompson, I.M. Ciobıcǎ, B.K. Hodnett, R.A. van Santen, M.O. Fanning, Electronic structure of the extended vanadyl pyrophosphate (100) surface, Catal. Today 91-92 (2004) 177-180 [126] Becker, Carsten, Catalytic Wall Reactor Concepts for the Synthesis of Maleic Anhydride and Methanol Steam-reforming, Dissertation, University Stuttgart, 2002, http://dx.doi.org/10.1841910pus-1577. [127] R.C. Edwards, Process for improving phosphorus-vanadium oxide and phosphorus-vanadium-co-metal oxide catalysts, US Patent, 4701433A (1987). [128] R.O. Kerr, Organo-phosphorus compounds in the reactivation of vanadium-phosphorus-oxygen catalysts, US Patent, 3474041A (1969). [129] R.C. Edwards, Process for improving phosphorus-vanadium oxide and phosphorus-vanadium-co-metal oxide catalysts, US Patent, 4810803A (1989). [130] G.T. Click, B.J. Barone, Stream regeneration of phosphorus treated vanadium-phosphorus-oxygen catalysts:US, 4515899A Patent 1985-05-07. [131] G. Landi, L. Lisi, J.C. Volta, Oxidation of propane to acrylic acid over vanadyl pyrophosphate:modifications of the structural and acid properties during the precursor activation and their relationship with catalytic performances, J. Mol. Cata. A:Chem. 222 (2004) 175-181 [132] D. Lesser, G. Mestl, T. Turek, Modeling the dynamic behavior of industrial fixed bed reactors for the manufacture of maleic anhydride, Chem. Eng. Sci. 172 (2017) 559-570 [133] J.R. Ebner, Method for Improving the Performance of VPO Catalysts., WO 93/16027. (1993) [134] W. Weng, R. Otaibi, M. Alhumaimess, M. Conte, J. Bartley, N. Dummer, G. Hutchings, C. Kiely, Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O, J. Mater. Chem. 21 (2011) 16136-16146 [135] J. Guan, H. Xu, S. Jing, S. Wu, Y. Ma, Y. Shao, Q. Kan, Selective oxidation of isobutane and isobutene over vanadium phosphorus oxides, Catal. Comm. 10 (2008) 276-280 [136] G. Landi, L. Lisi, G. Russo, Oxidation of propane and propylene to acrylic acid over vanadyl pyrophosphate, J. Mol. Cata. A:Chem. 239 (2005) 172-179 [137] V.N. Kalevaru, N. Madaan, A. Martin, Synthesis, characterization and catalytic performance of titania supported VPO catalysts for the ammoxidation of 3-picoline, Appl. Catal. A-Gen. 391 (2011) 52-62 [138] N. Dropka, Q. Smejkal, V.N. Kalevaru, A. Martin, Laboratory set-up to pilot plant investigations on vapour phase ammoxidation of 2,6-dichlorotoluene, App. Catal. A:Gen. 349 (2008) 125-132 [139] M. Baek, J.K. Lee, H.J. Kang, B.J. Kwon, J.H. Lee, I.K. Song, Ammoxidation of propane to acrylonitrile over Mo-V-P-O-y/Al2O3 catalysts:Effect of phosphorus content, Catal. Comm. 92 (2017) 27-30 [140] M. Basude, Ammoxidation of 2-methylpyrazine to 2-cyanopyrazine over promoted VPO catalysts and alumina supported Sb-VPO catalyst, J. Chem. Pharma. Res. 4 (2012) 2781-2788 |
[1] | 沈师孔, 李然家, 周吉萍, 余长春. 晶格氧用于轻烃的选择氧化[J]. , 2003, 11(6): 649-655. |
[2] | 马沛生, 陈明鸣, 董奕. 顺丁烯二酸酐在单一溶剂和混合溶剂中的固液平衡研究[J]. , 2002, 10(3): 323-327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||