中国化学工程学报 ›› 2022, Vol. 43 ›› Issue (3): 282-296.DOI: 10.1016/j.cjche.2022.02.010
Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu
收稿日期:
2021-08-26
修回日期:
2022-02-14
出版日期:
2022-03-28
发布日期:
2022-04-28
通讯作者:
Zhenxing Li,E-mail:lizx@cup.edu.cn;Hongjun Zhou,E-mail:zhhj63@163.com
基金资助:
Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu
Received:
2021-08-26
Revised:
2022-02-14
Online:
2022-03-28
Published:
2022-04-28
Contact:
Zhenxing Li,E-mail:lizx@cup.edu.cn;Hongjun Zhou,E-mail:zhhj63@163.com
Supported by:
摘要: As a secondary energy with great commercialization potential, hydrogen energy has been widely studied due to the high calorific value, clean combustion products and various reduction methods. At present, the blueprint of hydrogen energy economy in the world is gradually taking shape. Compared with the traditional high-energy consuming methane steam reforming hydrogen production method, the electrocatalytic water splitting hydrogen production stands out among other process of hydrogen production owning to the mild reaction conditions, high-purity hydrogen generation and sustainable production process. Basing on current technical economy situation, the highly electric power cost limits the further promotion of electrocatalytic water splitting hydrogen production process. Consequently, the rational design and development of low overpotential and high stability electrocatalytic water splitting catalysts are critical toward the realization of low-cost hydrogen production technology. In this review, we summarize the existing hydrogen production methods, elaborate the reaction mechanism of the electrocatalytic water splitting reaction under acidic and alkaline conditions and the recent progress of the respective catalysts for the two half-reactions. The structure–activity relationship of the catalyst was deep-going discussed, together with the prospects of electrocatalytic water splitting and the current challenges, aiming at provide insights for electrocatalytic water splitting catalyst development and its industrial applications.
Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting[J]. 中国化学工程学报, 2022, 43(3): 282-296.
Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 282-296.
[1] P.T. Wang, X. Zhang, J. Zhang, S. Wan, S.J. Guo, G. Lu, J.L. Yao, X.Q. Huang, Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis, Nat. Commun. 8 (2017) 14580.10.1038/ncomms14580 [2] Y.F. Jia, F. Li, K. Fan, L.C. Sun, Cu-based bimetallic electrocatalysts for CO2 reduction, Adv. Powder Mater. (2021), 10.1016/j.apmate.2021.10.003.10.1016/j.apmate.2021.10.003 [3] H.Y. Jing, P. Zhu, X.B. Zheng, Z.D. Zhang, D.S. Wang, Y.D. Li, Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis, Adv. Powder Mater. (2021)10.1016/j.apmate.2021.10.004, 10.1016/j.apmate.2021.10.004 [4] B.B. Jiang, F. Liao, Y.Y. Sun, Y.F. Cheng, M.W. Shao, Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution reaction using Si nanowires as a sacrificial template, Nanoscale 9 (28) (2017) 10138-10144.https://pubmed.ncbi.nlm.nih.gov/28696456/ [5] Z.P. Zhao, H.T. Liu, W.P. Gao, W. Xue, Z.Y. Liu, J. Huang, X.Q. Pan, Y. Huang, Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction, J. Am. Chem. Soc. 140 (29) (2018) 9046-9050.10.1021/jacs.8b04770 [6] C.C. Gong, White Paper of Hydrogen Energy and Fuel Cell Industry in China, State-owned Assets of Shandong6 (2019) 16 [7] Z.H. Wei, J.M. Sun, Y. Li, A.K. Datye, Y. Wang, Bimetallic catalysts for hydrogen generation, Chem. Soc. Rev. 41 (24) (2012) 7994.10.1039/c2cs35201j [8] L.G. Li, P.T. Wang, Q. Shao, X.Q. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting, Chem. Soc. Rev. 49 (10) (2020) 3072-3106.10.1039/d0cs00013b [9] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction:recent development and future perspectives, Chem. Soc. Rev. 46 (2) (2017) 337-365.10.1039/c6cs00328a [10] G.R. Xu, J. Bai, J.X. Jiang, J.M. Lee, Y. Chen, Polyethyleneimine functionalized platinum superstructures:enhancing hydrogen evolution performance by morphological and interfacial control, Chem. Sci. 8 (12) (2017) 8411-8418.10.1039/c7sc04109h [11] X.J. Cui, P.J. Ren, C. Ma, J. Zhao, R.X. Chen, S.M. Chen, N.P. Rajan, H.B. Li, L. Yu, Z.Q. Tian, D.H. Deng, Robust interface Ru centers for high-performance acidic oxygen evolution, Adv. Mater. 32 (25) (2020) 1908126.10.1002/adma.201908126 [12] J. Yin, J. Jin, M. Lu, B.L. Huang, H. Zhang, Y. Peng, P.X. Xi, C.H. Yan, Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media, J. Am. Chem. Soc. 142 (43) (2020) 18378-18386.10.1021/jacs.0c05050 [13] F. Mueller-Langer, E. Tzimas, M. Kaltschmitt, S. Peteves, Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term, Int. J. Hydrog. Energy 32 (16) (2007) 3797-3810.10.1016/j.ijhydene.2007.05.027 [14] T.J. Zhan, R.S. Bie, Q.H. Shen, L. Lin, A. Wu, P. Dong, Application of electrolysis water hydrogen production in the field of renewable energy power generation, IOP Conf. Ser.:Earth Environ. Sci. 598 (1) (2020) 012088.10.1088/1755-1315/598/1/012088 [15] Y. Wang, S.Z. Zhang, Economic assessment of selected hydrogen production methods:a review, Energy Sources B Econ. Plan. Policy 12 (11) (2017) 1022-1029.10.1080/15567249.2017.1350770 [16] P. Basu, Biomass Gasification and Pyrolysis:Practical Design and Theory, Academic Press, Burlington (2010) 167-288 [17] C. Pfeifer, Fluidized Bed Technologies for Near-zero Emission Combustion and Gasification, Woodhead Publishing Inc., Duxford (2013) 971-1001 [18] U. Arena, Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification, Woodhead Publishing Inc., Duxford (2013) 765-812 [19] X.Y. Long, N. Spiegl, C. Berrueco, N. Paterson, M. Millan, Fluidised bed oxy-fuel gasification of coal:interactions between volatiles and char at varying pressures and fuel feed rates, Chem. Eng. Sci. X 8 (2020) 100068.10.1016/j.cesx.2020.100068 [20] S. Rittmann, C. Herwig, A comprehensive and quantitative review of dark fermentative biohydrogen production, Microb Cell Fact 11 (2012) 115.https://pubmed.ncbi.nlm.nih.gov/22925149/ [21] J.S. Silva, J.S. Mendes, J.A.C. Correia, M.V.P. Rocha, L. Micoli, Cashew apple bagasse as new feedstock for the hydrogen production using dark fermentation process, J. Biotechnol. 286 (2018) 71-78.https://pubmed.ncbi.nlm.nih.gov/30205138/ [22] G. Najafpour, H. Younesi, A.R. Mohamed, Effect of organic substrate on hydrogen production from synthesis gas using Rhodospirillum rubrum, in batch culture, Biochem. Eng. J. 21 (2) (2004) 123-130.10.1016/j.bej.2004.06.001 [23] A.F. Cunha, J.J.M. Órfão, J.L. Figueiredo, Methane decomposition on Ni-Cu alloyed raney-type catalysts, Int. J. Hydrog. Energy 34 (11) (2009) 4763-4772.10.1016/j.ijhydene.2009.03.040 [24] Y.J. Li, W. Gao, L.J. Ci, C.M. Wang, P.M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon 48 (4) (2010) 1124-1130.10.1016/j.carbon.2009.11.034 [25] B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H, Electrochimica Acta 47 (22-23) (2002) 3571-3594.10.1016/S0013-4686(02)00329-8 [26] N. Danilovic, R. Subbaraman, D. Strmcnik, V. Stamenkovic, N. Markovic, Electrocatalysis of the HER in acid and alkaline media, J. Serbian Chem. Soc. 78 (12) (2013) 2007-2015.10.2298/jsc131118136d [27] S.S. Choi, S.H. Ha, Water swelling behaviors of silica-reinforced NBR composites in deionized water and salt solution, J. Ind. Eng. Chem. 16 (2) (2010) 238-242.10.1016/j.jiec.2010.01.052 [28] P.P. Su, W. Pei, X.W. Wang, Y.F. Ma, Q.K. Jiang, J. Liang, S. Zhou, J.J. Zhao, J. Liu, G.Q.M. Lu, Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate, Angew. Chem. Int. Ed. 60 (29) (2021) 16044-16050.10.1002/anie.202103557 [29] C. Niether, M.S. Rau, C. Cremers, D.J. Jones, K. Pinkwart, J. Tübke, Development of a novel experimental DEMS set-up for electrocatalyst characterization under working conditions of high temperature polymer electrolyte fuel cells, J. Electroanal. Chem. 747 (2015) 97-103.10.1016/j.jelechem.2015.04.002 [30] X.S. Wang, C.C. Xu, M. Jaroniec, Y. Zheng, S.Z. Qiao, Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions, Nat. Commun. 10 (1) (2019) 4876.https://pubmed.ncbi.nlm.nih.gov/31653845/ [31] H.Y. Jin, X.S. Wang, C. Tang, A. Vasileff, L.Q. Li, A. Slattery, S.Z. Qiao, Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride, Adv. Mater. 33 (13) (2021) 2007508.10.1002/adma.202007508 [32] Y. Sun, R. Li, X.X. Chen, J. Wu, Y. Xie, X. Wang, K.K. Ma, L. Wang, Z. Zhang, Q.L. Liao, Z. Kang, Y. Zhang, A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts, Adv. Energy Mater. 11 (12) (2021) 2003755.10.1002/aenm.202003755 [33] J. Joo, T. Kim, J. Lee, S.I. Choi, K. Lee, Morphology-controlled metal sulfides and phosphides for electrochemical water splitting, Adv. Mater. 31 (14) (2019) 1806682.10.1002/adma.201806682 [34] C.H. Yang, Z.D. Yang, H. Dong, N. Sun, Y. Lu, F.M. Zhang, G.L. Zhang, Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER, ACS Energy Lett. 4 (9) (2019) 2251-2258.10.1021/acsenergylett.9b01691 [35] J.S. Kim, B. Kim, H. Kim, K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction, Adv. Energy Mater. 8 (11) (2018) 1702774.10.1002/aenm.201702774 [36] C. Feng, M.B. Faheem, J. Fu, Y.Q. Xiao, C.L. Li, Y.B. Li, Fe-based electrocatalysts for oxygen evolution reaction:progress and perspectives, ACS Catal. 10 (7) (2020) 4019-4047.10.1021/acscatal.9b05445 [37] S. Riyajuddin, K. Azmi, M. Pahuja, S. Kumar, T. Maruyama, C. Bera, K. Ghosh, Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting, ACS Nano 15 (3) (2021) 5586-5599.10.1021/acsnano.1c00647 [38] S.A. Chala, M.C. Tsai, B.W. Olbasa, K. Lakshmanan, W.H. Huang, W.N. Su, Y.F. Liao, J.F. Lee, H.J. Dai, B.J. Hwang, Tuning dynamically formed active phases and catalytic mechanisms of in situ electrochemically activated layered double hydroxide for oxygen evolution reaction, ACS Nano 15 (9) (2021) 14996-15006.10.1021/acsnano.1c05250 [39] S.Y. Jing, L.S. Zhang, L. Luo, J.J. Lu, S.B. Yin, P.K. Shen, P. Tsiakaras, N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction, Appl. Catal. B Environ. 224 (2018) 533-540.10.1016/j.apcatb.2017.10.025 [40] J.G. Chen, Carbide and nitride overlayers on early transition metal surfaces:preparation, characterization, and reactivities, Chem. Rev. 96 (4) (1996) 1477-1498.https://pubmed.ncbi.nlm.nih.gov/11848799/ [41] M. Cabán-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide, Nat. Mater. 14 (12) (2015) 1245-1251.10.1038/nmat4410 [42] T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science 317 (5834) (2007) 100-102.https://pubmed.ncbi.nlm.nih.gov/17615351/ [43] R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts, Nat. Mater. 11 (6) (2012) 550-557.10.1038/nmat3313 [44] F. Lv, B.L. Huang, J.R. Feng, W.Y. Zhang, K. Wang, N. Li, J.H. Zhou, P. Zhou, W.X. Yang, Y.P. Du, D. Su, S.J. Guo, A highly efficient atomically thin curved PdIr bimetallene electrocatalyst, Natl Sci Rev 8 (9) (2021) nwab019.10.1093/nsr/nwab019 [45] M.W. Zhu, Q. Shao, Y. Qian, X.Q. Huang, Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes, Nano Energy 56 (2019) 330-337.10.1016/j.nanoen.2018.11.023 [46] Z.X. Li, C.C. Yu, Y.K. Kang, X. Zhang, Y.Y. Wen, Z.K. Wang, C. Ma, C. Wang, K.W. Wang, X.L. Qu, M. He, Y.W. Zhang, W.Y. Song, Ultra-small hollow ternary alloy nanoparticles for efficient hydrogen evolution reaction, Natl. Sci. Rev. 8 (7) (2021) nwaa204.10.1093/nsr/nwaa204 [47] G.G. Liu, W. Zhou, B. Chen, Q.H. Zhang, X.Y. Cui, B. Li, Z.C. Lai, Y. Chen, Z.C. Zhang, L. Gu, H. Zhang, Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution, Nano Energy 66 (2019) 104173.10.1016/j.nanoen.2019.104173 [48] F. Lv, W.Y. Zhang, W.X. Yang, J.R. Feng, K. Wang, J.H. Zhou, P. Zhou, S.J. Guo, Ir-based alloy nanoflowers with optimized hydrogen binding energy as bifunctional electrocatalysts for overall water splitting, Small Methods 4 (6) (2020) 1900129.10.1002/smtd.201900129 [49] D. Cao, H.X. Xu, D.J. Cheng, Construction of defect-rich RhCu nanotubes with highly active Rh3 Cu1 alloy phase for overall water splitting in all pH values, Adv. Energy Mater. 10 (9) (2020) 1903038.10.1002/aenm.201903038 [50] J.Q. Tian, N.Y. Cheng, Q. Liu, X.P. Sun, Y.Q. He, A.M. Asiri, Self-supported NiMo hollow nanorod array:an efficient 3D bifunctional catalytic electrode for overall water splitting, J. Mater. Chem. A 3 (40) (2015) 20056-20059.10.1039/c5ta04723d [51] S.H. Hong, S.H. Ahn, J. Choi, J.Y. Kim, H.Y. Kim, H.J. Kim, J.H. Jang, H. Kim, S.K. Kim, High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis, Appl. Surf. Sci. 349 (2015) 629-635.10.1016/j.apsusc.2015.05.040 [52] J. Zhang, Y. Zhou, S. Zhang, S. Li, Q. Hu, L. Wang, L. Wang, F. Ma, Electrochemical preparation and post-treatment of composite porous foam NiZn alloy electrodes with high activity for hydrogen evolution, Sci. Reports 8 (2018) 15071.https://www.nature.com/articles/s41598-018-33205-4%22%3e [53] Z.X. Li, C.C. Yu, Y.Y. Wen, Y. Gao, X.F. Xing, Z.T. Wei, H. Sun, Y.W. Zhang, W.Y. Song, Mesoporous hollow Cu-Ni alloy nanocage from core-shell Cu@Ni nanocube for efficient hydrogen evolution reaction, ACS Catal. 9 (6) (2019) 5084-5095.10.1021/acscatal.8b04814 [54] S.M. Saha, S. VAIDYA, K.V. RAMANUJACHARY, S.E. LOFLAND, A.K. GANGULI, Ternary alloy nanocatalysts for hydrogen evolution reaction, Bull. Mater. Sci. 39 (2) (2016) 433-436.10.1007/s12034-016-1182-2 [55] A. Subramania, A.R. Sathiya Priya, V.S. Muralidharan, Electrocatalytic cobalt-molybdenum alloy deposits, Int. J. Hydrog. Energy 32 (14) (2007) 2843-2847.10.1016/j.ijhydene.2006.12.027 [56] C.L. Fan, D.L. Piron, A. Sleb, P. Paradis, Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis, J. Electrochem. Soc. 141 (2) (1994) 382-387.10.1149/1.2054736 [57] H.L.S. Santos, P.G. Corradini, M. Medina, L.H. Mascaro, Effect of copper addition on cobalt-molybdenum electrodeposited coatings for the hydrogen evolution reaction in alkaline medium, Int. J. Hydrog. Energy 45 (58) (2020) 33586-33597.10.1016/j.ijhydene.2020.09.128 [58] H. Kim, H. Park, S. Oh, S.K. Kim, Facile electrochemical preparation of nonprecious Co-Cu alloy catalysts for hydrogen production in proton exchange membrane water electrolysis, Int. J. Energy Res. 44 (4) (2020) 2833-2844.10.1002/er.5099 [59] F. Safizadeh, G. Houlachi, E. Ghali, Electrocatalytic activity and corrosion behavior of FeMo and FeMoP coatings employed as cathode material for alkaline water electrolysis, Int. J. Hydrog. Energy 43 (16) (2018) 7938-7945.10.1016/j.ijhydene.2018.03.071 [60] F. Chu, K.Y. Wu, Y.Y. Meng, K. Edalati, H.J. Lin, Effect of high-pressure torsion on the hydrogen evolution performances of a melt-spun amorphous Fe73.5Si13.5B9Cu1Nb3 alloy, Int. J. Hydrog. Energy 46 (49) (2021) 25029-25038.10.1016/j.ijhydene.2021.05.042 [61] W.C. Sheng, H.A. Gasteiger, Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum:acid vs alkaline electrolytes, J. Electrochem. Soc. 157 (11) (2010) B1529.10.1149/1.3483106 [62] X.Y. Yu, X.W. David Lou, Mixed metal sulfides for electrochemical energy storage and conversion, Adv. Energy Mater. 8 (3) (2018) 1701592.10.1002/aenm.201701592 [63] W.J. Zhou, K. Zhou, D.M. Hou, X.J. Liu, G.Q. Li, Y.H. Sang, H. Liu, L.G. Li, S.W. Chen, Three-dimensional hierarchical frameworks based on MoS? nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution, ACS Appl. Mater. Interfaces 6 (23) (2014) 21534-21540.https://pubmed.ncbi.nlm.nih.gov/25347618/ [64] N. Jiang, Q. Tang, M.L. Sheng, B. You, D.E. Jiang, Y.J. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions:a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles, Catal. Sci. Technol. 6 (4) (2016) 1077-1084.10.1039/c5cy01111f [65] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, Biomimetic hydrogen evolution:MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc. 127 (15) (2005) 5308-5309.https://pubmed.ncbi.nlm.nih.gov/15826154/ [66] Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.S. Hong, H.J. Dai, MoS2 nanoparticles grown on graphene:an advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133 (19) (2011) 7296-7299.https://pubmed.ncbi.nlm.nih.gov/21510646/ [67] X.M. Geng, W. Wu, N. Li, W.W. Sun, J. Armstrong, A. Al-Hilo, M. Brozak, J.B. Cui, T.P. Chen, Three-dimensional structures of MoS2Nanosheets with ultrahigh hydrogen evolution reaction in water reduction, Adv. Funct. Mater. 24 (39) (2014) 6123-6129.10.1002/adfm.201401328 [68] Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion, Adv. Sci. (Weinh) 3 (5) (2016) 1500286.https://pubmed.ncbi.nlm.nih.gov/27812464/ [69] J.L. Shi, Z.H. Pu, Q. Liu, A.M. Asiri, J.M. Hu, X.P. Sun, Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values, Electrochimica Acta 154 (2015) 345-351.10.1016/j.electacta.2014.12.096 [70] R. Tong, Z. Sun, F. Zhang, X.N. Wang, J.C. Xu, X.Q. Shi, S.P. Wang, H. Pan, N and V coincorporated Ni nanosheets for enhanced hydrogen evolution reaction, ACS Sustainable Chem. Eng. 6 (12) (2018) 16525-16531.10.1021/acssuschemeng.8b03600 [71] H.Y. Jin, Q.F. Gu, B. Chen, C. Tang, Y. Zheng, H. Zhang, M. Jaroniec, S.Z. Qiao, Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution, Chem 6 (9) (2020) 2382-2394.10.1016/j.chempr.2020.06.037 [72] H.Y. Jin, T. Song, U. Paik, S.Z. Qiao, Metastable two-dimensional materials for electrocatalytic energy conversions, Acc. Mater. Res. 2 (7) (2021) 559-573.10.1021/accountsmr.1c00115 [73] J.Q. Shan, Y. Zheng, B.Y. Shi, K. Davey, S.Z. Qiao, Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation, ACS Energy Lett. 4 (11) (2019) 2719-2730.10.1021/acsenergylett.9b01758 [74] C.Y. Jian, Q. Cai, W.T. Hong, J. Li, W. Liu, Edge-riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction, Small 14 (13) (2018) 1703798.10.1002/smll.201703798 [75] J.X. Zhao, X. Ren, H.M. Ma, X. Sun, Y. Zhang, T. Yan, Q. Wei, D. Wu, Synthesis of self-supported amorphous CoMoO4 nanowire array for highly efficient hydrogen evolution reaction, ACS Sustainable Chem. Eng. 5 (11) (2017) 10093-10098.10.1021/acssuschemeng.7b02093 [76] Q. Liu, J.Q. Tian, W. Cui, P. Jiang, N.Y. Cheng, A.M. Asiri, X.P. Sun, Carbon nanotubes decorated with CoP nanocrystals:a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution, Angew. Chem. Int. Ed Engl. 53 (26) (2014) 6710-6714.https://pubmed.ncbi.nlm.nih.gov/24845625/ [77] S. Wirth, F. Harnisch, M. Weinmann, U. Schröder, Comparative study of IVB-VIB transition metal compound electrocatalysts for the hydrogen evolution reaction, Appl. Catal. B Environ. 126 (2012) 225-230.10.1016/j.apcatb.2012.07.023 [78] D.V. Esposito, S.T. Hunt, A.L. Stottlemyer, K.D. Dobson, B.E. McCandless, R.W. Birkmire, J.G. Chen, Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates, Angewandte Chemie 122 (51) (2010) 10055-10058.10.1002/ange.201004718 [79] P. Liu, J.A. Rodriguez, Catalysts for hydrogen evolution from the[NiFe]hydrogenase to the Ni2P(001) surface:the importance of ensemble effect, J. Am. Chem. Soc. 127 (42) (2005) 14871-14878.https://pubmed.ncbi.nlm.nih.gov/16231942/ [80] J. Tian, Q. Liu, Y. Liang, Z. Xing, A.M. Asiri, X. Sun, FeP nanoparticles film grown on carbon cloth:an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions, ACS Appl. Mater. Interfaces 6 (23) (2014) 20579-20584.https://pubmed.ncbi.nlm.nih.gov/25401517/ [81] H.C. Yang, Y.J. Zhang, F. Hu, Q.B. Wang, Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability, Nano Lett. 15 (11) (2015) 7616-7620.10.1021/acs.nanolett.5b03446 [82] L. Zhang, Y.Y. Qi, L. Sun, G.J. Chen, L.X. Wang, M.S. Zhang, D.J. Zeng, Y.N. Chen, X.G. Wang, K.W. Xu, F. Ma, Facile route of nitrogen doping in nickel cobalt phosphide for highly efficient hydrogen evolution in both acid and alkaline electrolytes, Appl. Surf. Sci. 512 (2020) 145715.10.1016/j.apsusc.2020.145715 [83] S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, co, and Ni:a review, ACS Catal. 6 (12) (2016) 8069-8097.10.1021/acscatal.6b02479 [84] K. Karthick, S. Anantharaj, S.R. Ede, S. Kundu, Nanosheets of nickel iron hydroxy carbonate hydrate with pronounced OER activity under alkaline and near-neutral conditions, Inorg. Chem. 58 (3) (2019) 1895-1904.https://pubmed.ncbi.nlm.nih.gov/30649867/ [85] S. Anantharaj, S.R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P.E. Karthik, S. Kundu, Precision and correctness in the evaluation of electrocatalytic water splitting:revisiting activity parameters with a critical assessment, Energy Environ. Sci. 11 (4) (2018) 744-771.10.1039/c7ee03457a [86] T. Audichon, T.W. Napporn, C. Canaff, C. Morais, C. Comminges, K.B. Kokoh, IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting, J. Phys. Chem. C 120 (5) (2016) 2562-2573.10.1021/acs.jpcc.5b11868 [87] L.X. Feng, A.R. Li, Y.X. Li, J. Liu, L. Wang, L.Y. Huang, Y. Wang, X.B. Ge, A highly active CoFe layered double hydroxide for water splitting, ChemPlusChem 82 (3) (2017) 483-488.10.1002/cplu.201700005 [88] B.J. Waghmode, A.P. Gaikwad, C.V. Rode, S.D. Sathaye, K.R. Patil, D.D. Malkhede, Calixarene intercalated NiCo layered double hydroxide for enhanced oxygen evolution catalysis, ACS Sustainable Chem. Eng. 6 (8) (2018) 9649-9660.10.1021/acssuschemeng.7b04788 [89] Y.Y. Wen, Z.T. Wei, J.H. Liu, R. Li, P. Wang, B. Zhou, X. Zhang, J. Li, Z.X. Li, Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution, J. Energy Chem. 52 (2021) 412-420.10.1016/j.jechem.2020.04.009 [90] Z.X. Li, X. Zhang, Y.K. Kang, C.C. Yu, Y.Y. Wen, M.L. Hu, D. Meng, W.Y. Song, Y. Yang, Interface engineering of co-LDH@MOF heterojunction in highly stable and efficient oxygen evolution reaction, Adv. Sci. 8 (2) (2021) 2002631.10.1002/advs.202002631 [91] W.M. Li, S.H. Chen, M.X. Zhong, C. Wang, X.F. Lu, Synergistic coupling of NiFe layered double hydroxides with Co-C nanofibers for high-efficiency oxygen evolution reaction, Chem. Eng. J. 415 (2021) 128879.10.1016/j.cej.2021.128879 [92] H.X. Liao, T. Luo, P.F. Tan, K.J. Chen, L.L. Lu, Y. Liu, M. Liu, J. Pan, Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance, Adv. Funct. Mater. 31 (38) (2021) 2102772.10.1002/adfm.202102772 [93] Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions, J. Phys. Chem. Lett. 3 (3) (2012) 399-404.https://pubmed.ncbi.nlm.nih.gov/26285858/ [94] B.H. Han, M. Risch, S. Belden, S. Lee, D. Bayer, E. Mutoro, Y. Shao-Horn, Screening oxide support materials for OER catalysts in acid, J. Electrochem. Soc. 165 (10) (2018) F813-F820.10.1149/2.0921810jes [95] S.M. Galani, A. Mondal, D.N. Srivastava, A.B. Panda, Development of RuO2/CeO2 heterostructure as an efficient OER electrocatalyst for alkaline water splitting, Int. J. Hydrog. Energy 45 (37) (2020) 18635-18644.10.1016/j.ijhydene.2019.08.026 [96] P. Plate, C. Höhn, U. Bloeck, P. Bogdanoff, S. Fiechter, F.F. Abdi, R. van de Krol, A.C. Bronneberg, On the origin of the OER activity of ultrathin manganese oxide films, ACS Appl. Mater. Interfaces 13 (2) (2021) 2428-2436.10.1021/acsami.0c15977 [97] M.A. Kirsanova, V.D. Okatenko, D.A. Aksyonov, R.P. Forslund, J.T. Mefford, K.J. Stevenson, A.M. Abakumov, Bifunctional OER/ORR catalytic activity in the tetrahedral YBaCo4O7.3 oxide, J. Mater. Chem. A 7 (1) (2019) 330-341.10.1039/c8ta09862j [98] A. Dutta, N. Pradhan, Developments of metal phosphides as efficient OER precatalysts, J Phys Chem Lett 8 (1) (2017) 144-152.https://pubmed.ncbi.nlm.nih.gov/27981840/ [99] Y.T. Pi, X.Y. Xing, L.M. Lu, Z.B. He, T.Z. Ren, Hierarchical porous activated carbon in OER with high efficiency, RSC Adv. 6 (104) (2016) 102422-102427.10.1039/c6ra19333a [100] J.Q. Shan, C. Ye, S.M. Chen, T.L. Sun, Y. Jiao, L.M. Liu, C.Z. Zhu, L. Song, Y. Han, M. Jaroniec, Y.H. Zhu, Y. Zheng, S.Z. Qiao, Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation, J. Am. Chem. Soc. 143 (13) (2021) 5201-5211.10.1021/jacs.1c01525 [101] A.S. Souza, L.S. Bezerra, E.S.F. Cardoso, G.V. Fortunato, G. Maia, Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER, J. Mater. Chem. A 9 (18) (2021) 11255-11267.10.1039/d1ta00817j [102] H.L. Pan, Y. Wu, C. Li, H.H. Li, Y.Y. Gong, L.Y. Niu, X.J. Liu, C.Q. Sun, S.Q. Xu, Efficient bi-directional OER/ORR catalysis of metal-free C6H4NO2/g-C3N4:density functional theory approaches, Appl. Surf. Sci. 531 (2020) 147292.10.1016/j.apsusc.2020.147292 [103] Q.G. Du, P.P. Su, Z.Z. Cao, J. Yang, C.A.H. Price, J. Liu, Construction of N and Fe co-doped CoO/CoxN interface for excellent OER performance, Sustain. Mater. Technol. 29 (2021) e00293.10.1016/j.susmat.2021.e00293 [104] S. Yue, S.S. Wang, Q.Z. Jiao, X.T. Feng, K. Zhan, Y.Q. Dai, C.H. Feng, H.S. Li, T.Y. Feng, Y. Zhao, Preparation of yolk-shell-structured co x Fe1-x P with enhanced OER performance, ChemSusChem 12 (19) (2019) 4461-4470.10.1002/cssc.201901604 [105] Y. Bai, L.C. Zhang, Q.L. Li, Y.K. Wu, Y.P. Wang, M.W. Xu, S.J. Bao, Self-supported CdP2-CDs-CoP for high-performance OER catalysts, ACS Sustainable Chem. Eng. 9 (3) (2021) 1297-1303.10.1021/acssuschemeng.0c07700 [106] F. He, Y.J. Liu, Q.H. Cai, J.X. Zhao, Size-dependent electrocatalytic activity of ORR/OER on palladium nanoclusters anchored on defective MoS2monolayers, New J. Chem. 44 (37) (2020) 16135-16143.10.1039/d0nj03645e [107] S.J. Yao, C.R. Wu, D.Y. Li, B. Gao, X.X. Wen, Z.Y. Liu, W.Z. Li, Coupling SnS2 and rGO aerogel to CuS for enhanced light-assisted OER electrocatalysis, Dalton Trans. 50 (16) (2021) 5530-5539.10.1039/d1dt00271f [108] R. Guo, S.Q. Zhang, H. Wen, Z.Y. Ni, Y. He, T. Yu, J.H. You, In situ grown CoS on nickel foam pre-deposited with sulphur as an efficient OER electrocatalyst, New J. Chem. 45 (4) (2021) 1887-1892.10.1039/d0nj05156j [109] M. Salmanion, M.M. Najafpour, Structural changes of a NiFe-based metal-organic framework during the oxygen-evolution reaction under alkaline conditions, Int. J. Hydrog. Energy 46 (37) (2021) 19245-19253.10.1016/j.ijhydene.2021.03.107 [110] W.H. Fang, J. Wang, Y. Hu, X.Q. Cui, R.F. Zhu, Y.H. Zhang, C.C. Yue, J.Q. Dang, W. Cui, H. Zhao, Z.X. Li, Metal-organic framework derived Fe-Co-CN/reduced graphene oxide for efficient HER and OER, Electrochimica Acta 365 (2021) 137384.10.1016/j.electacta.2020.137384 [111] Y. Ma, Y.J. Miao, G.M. Mu, D.M. Lin, C.G. Xu, W. Zeng, F.Y. Xie, Highly enhanced OER performance by Er-doped Fe-MOF nanoarray at large current densities, Nanomaterials 11 (7) (2021) 1847.10.3390/nano11071847 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||