[1] S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, The U.S. department of energy's national hydrogen storage project:Progress towards meeting hydrogen-powered vehicle requirements, Catal. Today 120(2007) 246-256. [2] S. Dutta, A review on production, storage of hydrogen and its utilization as an energy resource, J. Ind. Eng. Chem. 20(2014) 1148-1156. [3] D.I. Kondarides, V.M. Daskalaki, A. Patsoura, X.E. Verykios, Hydrogen production by photoinduced reforming of biomass components and derivatives at ambient conditions, Catal. Lett. 122(2008) 26-32. [4] J.R. Rostrup-Nielsen, Fuels and energy for the future:the role of catalysis, Catal. Rev. 46(2004) 247-270. [5] N. Strataki, V. Bekiari, D.I. Kondarides, P. Lianos, Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films, Appl. Catal. B Environ. 77(2007) 184-189. [6] T. Riis, E.F. Hagen, P.J. Vie, Ø. Ulleberg, Hydrogen Production and Storage-R&D Priorities and Gaps, IEA Hydrogen Implementing Agreement (HIA), International Energy Agency (IEA), Paris, 2006. [7] G. Deluga, J. Salge, L. Schmidt, X. Verykios, Renewable hydrogen from ethanol by autothermal reforming, Science 303(2004) 993-997. [8] R.D. Cortright, R. Davda, J.A. Dumesic, Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water, Materials for sustainable energy:a collection of peer-reviewed research and review articles from nature publishing group, World Scientific 2011, pp. 289-292. [9] A. Patsoura, D.I. Kondarides, X.E. Verykios, Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes, Appl. Catal. B Environ. 64(2006) 171-179. [10] Q. Wang, J. Lian, Y. Bai, J. Hui, J. Zhong, J. Li, N. An, J. Yu, F. Wang, Photocatalytic activity of hydrogen production from water over TiO2 with different crystal structures, Mater. Sci. Semicond. Process. 40(2015) 418-423. [11] A. Mills, S.K. Lee, Platinum group metals and their oxides in semiconductor photosensitisation, Platin. Met. Rev. 47(2003) 2-12. [12] M. Jalalah, M. Faisal, H. Bouzid, A.A. Ismail, S.A. Al-Sayari, Dielectric and photocatalytic properties of sulfur doped TiO2 nanoparticles prepared by ball milling, Mater. Res. Bull. 48(2013) 3351-3356. [13] Z. Liang, X. Bai, P. Hao, Y. Guo, Y. Xue, J. Tian, H. Cui, Full solar spectrum photocatalytic oxygen evolution by carbon-coated TiO2 hierarchical nanotubes, Appl. Catal. B Environ. 243(2019) 711-720. [14] Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue, Y. Guo, J. Tian, X. Wang, H. Cui, 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity, Appl. Catal. B Environ. 246(2019) 12-20. [15] Y. Li, L. Ding, S. Yin, Z. Liang, Y. Xue, X. Wang, H. Cui, J. Tian, Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T-WS2 as co-catalysts, Nano-Micro Lett. 12(2020) (Article number 6). [16] Y. Li, L. Ding, Z. Liang, Y. Xue, H. Cui, J. Tian, Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2, Chem. Eng. J. 383(2020) 123178. [17] D. Gaoa, W. Liua, Y. Xua, P. Wanga, J. Fanb, H. Yua, Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst:one-step photoinduced deposition and its improved H2-evolution activity, Appl. Catal. B Environ. 260(2020) 118190. [18] P. Wang, S. Xu, F. Chen, H. Yu, Ni nanoparticles as electron-transfer mediators and NiSx as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2, Chin. J. Catal. 40(2019) 343-351. [19] V.M. Daskalaki, P. Panagiotopoulou, D.I. Kondarides, Production of peroxide species in Pt/TiO2 suspensions under conditions of photocatalytic water splitting and glycerol photoreforming, Chem. Eng. J. 170(2011) 433-439. [20] Z. Ghasemi, H. Younesi, A.A. Zinatizadeh, Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater:optimization of process parameters by response surface methodology, Chemosphere 159(2016) 552-564. [21] Z. Lin, X. Wang, J. Liu, Z. Tian, L. Dai, B. He, C. Han, Y. Wu, Z. Zeng, Z. Hu, On the role of localized surface plasmon resonance in UV-vis light irradiated Au/TiO2 photocatalysis systems:pros and cons, Nanoscale 7(2015) 4114-4123. [22] Y. Li, G. Lu, S. Li, Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2, Appl. Catal. A-Gen. 214(2001) 179-185. [23] J. Kim, Y. Park, H. Park, Solar hydrogen production coupled with the degradation of a dye pollutant using TiO2 modified with platinum and Nafion, Int. J. Photoenergy 2014(2014) 324859. [24] Z.H. Al-Azri, W.T. Chen, A. Chan, V. Jovic, T. Ina, H. Idriss, G.I. Waterhouse, The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production:performance evaluation of M/TiO2 photocatalysts (M=Pd, Pt, Au) in different alcohol-water mixtures, J. Catal. 329(2015) 355-367. [25] Y. Li, Y.K. Peng, L. Hu, J. Zheng, D. Prabhakaran, S. Wu, T.J. Puchtler, M. Li, K.Y. Wong, R.A. Taylor, S.C.E. Tsang, Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures, Nat. Commun. 10(2019) 4421. [26] S. Sampath, K. Sellappa, Visible-light-driven photocatalysts for hydrogen production by water splitting, Energ. Source. Part A 42(6) (2020) 719-729. [27] M. Imizcoz, A.V. Puga, Assessment of photocatalytic hydrogen production from biomass or wastewaters depending on the metal co-catalyst and its deposition method on TiO2, Catalysts 9(2019) 584. [28] M.I. Badawy, M.Y. Ghaly, M.E. Ali, Photocatalytic hydrogen production over nanostructured mesoporous titania from olive mill wastewater, Desalination 267(2011) 250-255. [29] Q. Zhang, D.D. Zheng, L.S. Xu, C.T. Chang, Photocatalytic conversion of terephthalic acid preparation wastewater to hydrogen by graphene-modified TiO2, Catal. Today 274(2016) 8-14. [30] S. Preechajarn, P. Prasertsri, Thailand Bio-fuels Annual 2016; USDA Foreign Agricultural Service, 2016. [31] P. Jaruwat, S. Kongjao, M. Hunsom, Management of biodiesel wastewater by the combined processes of chemical recovery and electrochemical treatment, Energ. Convers. Manage. 51(2010) 531-537. [32] P. Pansa-Ngat, T. Jedsukontorn, M. Hunsom, Simultaneous H2 production and pollutant removal from biodiesel wastewater by photocatalytic oxidation with different crystal structure TiO2 photocatalysts, J. Taiwan Inst. Chem. E. 78(2017) 386-394. [33] P. Pansa-Ngat, T. Jedsukontorn, M. Hunsom, Optimal hydrogen production coupled with pollutant removal from biodiesel wastewater using a thermally treated TiO2 photocatalyst (P25):influence of the operating conditions, Nanomaterials-Basel 8(2018) 96. [34] L.S. Clesceri, A.E. Greenberg, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA American Public Health Association, 1998. [35] J. Van Gerpen, B. Shanks, R. Pruszko, D. Clements, G. Knothe, Biodiesel Analytical Methods, National Renewable Energy Laboratory, Colorado, 2004. [36] International A, ASTM D 66417A:Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration, https://www.astm.org/Standards/D664.htm. [37] W. Pitakpoolsil, M. Hunsom, Treatment of biodiesel wastewater by adsorption with commercial chitosan flakes:parameter optimization and process kinetics, J. Environ. Manag. 133(2014) 284-292. [38] N.T. Nolan, M.K. Seery, S.C. Pillai, Spectroscopic investigation of the anatase-to-rutile transformation of sol-gel-synthesized TiO2 photocatalysts, J. Phys. Chem. C 113(2009) 16151-16157. [39] F.F. Wang, S. Shao, C.L. Liu, C.L. Xu, R.Z. Yang, W.S. Dong, Selective oxidation of glycerol over Pt supported on mesoporous carbon nitride in base-free aqueous solution, Chem. Eng. J. 264(2015) 336-343. [40] A. Naldoni, F. Riboni, M. Marelli, F. Bossola, G. Ulisse, A. Di Carlo, I., Píš, S. Nappini, M. Malvestuto, M.V. Dozzi, Influence of TiO2 electronic structure and strong metal-support interaction on plasmonic Au photocatalytic oxidations, Catal. Sci. Technol., 6(2016) 3220-3229. [41] S. Link, M.A. El-Sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B 103(1999) 4212-4217. [42] G. De, C. Rao, Au-Pt alloy nanocrystals incorporated in silica films, J. Mater. Chem. 15(2005) 891-894. [43] A. Alghannam, C.L. Muhich, C.B. Musgrave, Adatom surface diffusion of catalytic metals on the anatase TiO2(101) surface, Phys. Chem. Chem. Phys. 19(2017) 4541-4552. [44] M.C. Mathpal, A.K. Tripathi, P. Kumar, V. Agrahari, M.K. Singh, A. Agarwal, Distortion induced band gap and phase transformation in TixAg(1-x)O2 system, Chem. Phys. Lett. 614(2014) 162-166. [45] K.S. Yang, Y.R. Lu, Y.Y. Hsu, C.J. Lin, C.M. Tseng, S.Y.H. Liou, K. Kumar, D.H. Wei, C.L. Dong, C.L. Chen, Plasmon-induced visible-light photocatalytic activity of Au nanoparticle-decorated hollow mesoporous TiO2:a view by X-ray spectroscopy, J. Phys. Chem. C 122(2018) 6955-6962. [46] F. Zhang, J. Chen, X. Zhang, W. Gao, R. Jin, N. Guan, Y. Li, Synthesis of titania-supported platinum catalyst:the effect of pH on morphology control and valence state during photodeposition, Langmuir 20(2004) 9329-9334. [47] K. Shimura, H. Yoshida, Heterogeneous photocatalytic hydrogen production from water and biomass derivatives, Energy Environ. Sci. 4(2011) 2467-2481. [48] M.D.O. Melo, L.A. Silva, Photocatalytic production of hydrogen:an innovative use for biomass derivatives, J. Brazil. Chem. Soc. 22(2011) 1399-1406. [49] Y. Nosaka, K. Norimatsu, H. Miyama, The function of metals in metal-compounded semiconductor photocatalysts, Chem. Phys. Lett. 106(1984) 128-131. [50] M. Rodríguez, Fenton and UV-vis Based Advanced Oxidation Processes in Wastewater Treatment:Degradation, Mineralization and Biodegradability Enhancement, Universitat de Barcelona, Spain, 2003. [51] X. Fu, J. Long, X. Wang, D.Y. Leung, Z. Ding, L. Wu, Z. Zhang, Z. Li, X. Fu, Photocatalytic reforming of biomass:a systematic study of hydrogen evolution from glucose solution, Int. J. Hydrogen Energ. 33(2008) 6484-6491. [52] K.H. Leong, H.Y. Chu, S. Ibrahim, P. Saravanan, Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-lightdriven photocatalytic activity, Beilstein J. Nanotech. 6(2015) 428-437. [53] J.B. Zhong, Y. Lu, W.D. Jiang, Q.M. Meng, X.Y. He, J.Z. Li, Y.Q. Chen, Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene, J. Hazard. Mater. 168(2009) 1632-1635. [54] V. Jovic, W.T. Chen, D. Sun-Waterhouse, M.G. Blackford, H. Idriss, G.I. Waterhouse, Effect of gold loading and TuO2 support composition on the activity of Au/TiO2 photocatalysts for H2 production from ethanol-water mixtures, J. Catal. 305(2013) 307-317. |