[1] F.M. Alotaibi, S. González-Cortés, M.F. Alotibi, T. Xiao, H. Al-Megren, G. Yang, P.P. Edwards, Enhancing the production of light olefins from heavy crude oils:turning challenges into opportunities, Catal. Today 317(2018) 86-98. [2] H.M. Torres Galvis, K.P. de Jong, Catalysts for production of lower olefins from synthesis gas:a review, ACS Catal. 3(9) (2013) 2130-2149. [3] P. Ibarra-Gonzalez, B.-G. Rong, A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes, Chin. J. Chem. Eng. 27(7) (2019) 1523-1535. [4] A.V. Kirilin, J.F. Dewilde, V. Santos, A. Chojecki, K. Scieranka, A. Malek, Conversion of synthesis gas to light olefins:impact of hydrogenation activity of methanol synthesis catalyst on the hybrid process selectivity over Cr-Zn and cu-Zn with SAPO-34, Ind. Eng. Chem. Res. 56(45) (2017) 13392-13401. [5] V.R. Calderone, N.R. Shiju, D.C. Ferré, G. Rothenberg, Bimetallic catalysts for the Fischer-Tropsch reaction, Green Chem. 13(8) (2011) 1950. [6] Y. Liu, B.-T. Teng, X.-H. Guo, Y. Li, J. Chang, L. Tian, X. Hao, Y. Wang, H.-W. Xiang, Y.-Y. Xu, Y.-W. Li, Effect of reaction conditions on the catalytic performance of Fe-Mn catalyst for Fischer-Tropsch synthesis, J. Mol. Catal. A-Chem 272(1-2) (2007) 182-190. [7] J. Yang, X. Pan, F. Jiao, J. Li, X. Bao, Direct conversion of syngas to aromatics, Chem. Comm. 53(81) (2017) 11146-11149. [8] F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Selective conversion of syngas to light olefins, Science 351(6227) (2016) 1065-1068. [9] Q. Ge, T. Tomonobu, K. Fujimoto, X. Li, Influence of Pd ion-exchange temperature on the catalytic performance of Cu-ZnO/Pd-b zeolite hybrid catalyst for CO hydrogenation to light hydrocarbons, Catal. Commun. 9(2008) 1775-1778. [10] P. Zhang, F. Meng, X. Li, L. Yang, P. Ma, Z. Li, Excellent selectivity for direct conversion of syngas to light olefins over Mn-Ga oxide and SAPO-34 bifunctional catalyst, Catal. Sci. Technol. 9(20) (2019) 5577-5581. [11] P. Tian, Y. Wei, M. Ye, Z. Liu, Methanol to olefins (MTO):from fundamentals to commercialization, ACS Catal. 5(3) (2015) 1922-1938. [12] Y. Chen, Y. Xu, D. Cheng, Y. Chen, F. Chen, X. Lu, Y. Huang, S. Ni, C2-C4 hydrocarbons synthesis from syngas over CuO-ZnO-Al2O3/SAPO-34 bifunctional catalyst, J. Chem. Technol. Biotechnol. 90(3) (2015) 415-422. [13] K. Chen, B. Gu, X. Liu, J. Kang, Q. Zhang, Y. Wang, Direct and highly selective conversion of synthesis gas into lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling, Angew. Chem. Comm. 128(2016) 4803-4806. [14] Y. Zhu, X. Pan, F. Jiao, J. Li, J. Yang, M. Ding, Y. Han, Z. Liu, X. Bao, Role of manganese oxide in syngas conversion to light olefins, Catal. 7(4) (2017) 2800-2804. [15] J. Zhu, Y. Cui, Z. Nawaz, Y. Wang, F. Wei, In situ synthesis of SAPO-34 zeolites in kaolin microspheres for a fluidized methanol or dimethyl ether to olefins process, Chin. J. Chem. Eng. 18(6) (2010) 979-987. [16] O.A. Bulavchenko, Z.S. Vinokurov, T.N. Afonasenko, P.G. Tsyrul'nikov, S.V. Tsybulya, A.A. Saraev, V.V. Kaichev, Reduction of mixed Mn-Zr oxides:in situ XPS and XRD studies, Dalton Trans. 44(35) (2015) 15499-15507. [17] D. Döbber, D. Kießling, W. Schmitz, G. Wendt, MnOx/ZrO2 catalysts for the total oxidation of methane and chloromethane, Appl. Catal. B Environ. 52(2) (2004) 135-143. [18] G. Raveendra, C. Li, B. Liu, Y. Cheng, F. Meng, Z. Li, Synthesis of lower olefins from syngas over Zn/Al2O3-SAPO-34 hybrid catalysts:role of doped Zr and influence of the Zn/Al2O3 ratio, Catal. Sci. Technol. 8(14) (2018) 3527-3538. [19] E.F. López, V.S. Escribano, C. Resini, J.M. Gallardo-Amores, G. Busca, A study of coprecipitated Mn-Zr oxides and their behaviour as oxidation catalysts, Appl. Catal. B Environ. 29(2001) 251-261. [20] Q. Ge, A. Kiennemann, A.C. Roger, W. Li, H. Xu, Preparation and characterization of modified-ZrO2 catalysts for the reaction of CO hydrogenation, J. Nat. Gas Chem. 13(2004) 41-44. [21] S. Dang, P. Gao, Z. Liu, X. Chen, C. Yang, H. Wang, L. Zhong, S. Li, Y. Sun, Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts, J. Catal. 364(2018) 382-393. [22] J. Su, D. Wang, Y. Wang, H. Zhou, C. Liu, S. Liu, C. Wang, W. Yang, Z. Xie, M. He, Direct conversion of syngas into light olefins over zirconium-doped indium(III) oxide and SAPO-34 bifunctional catalysts:design of oxide component and construction of reaction network, ChemCatChem 10(7) (2018) 1536-1541. [23] J.I. Gutierrez-Ortiz, B. de Rivas, R. Lopez-Fonseca, S. Martin, J.R. Gonzalez-Velasco, Structure of Mn-Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons, Chemosphere 68(6) (2007) 1004-1012. [24] M. Piumetti, D. Fino, N. Russo, Mesoporous manganese oxides prepared by solution combustion, Appl. Catal. B Environ. 163(2015) 277-287. [25] B. Zhang, M. Liebau, B. Liu, L. Li, S. Zhang, R. Gläser, Selective catalytic reduction of NOx with NH3 over Mn-Zr-Ti mixed oxide catalysts, J. Mater. Sci. 54(9) (2019) 6943-6960. [26] Y. Liu, C. Wen, Y. Guo, X. Liu, J. Ren, G. Lu, Y. Wang, Mechanism of CO disproportionation on reduced ceria, ChemCatChem 2(3) (2010) 336-341. [27] S. Damyanova, B. Pawelec, K. Arishtirova, M.V. Martinez Huerta, J.L.G. Fierro, The effect of CeO2 on the surface and catalytic properties of Pt/CeO2-ZrO2 catalysts for methane dry reforming, Appl. Catal. B Environ. 89(1-2) (2009) 149-159. [28] V.P. Dravid, V. Ravikumar, M.R. Notis, C.E. Lyman, G. Dhalenne, A. Revcolevschi, Stabilization of cubic zirconia with manganese oxide, J. Am. Ceram. Soc. 77(10) (1994) 2758-2762. [29] T. Fjermestad, S. Svelle, O. Swang, Mechanism of Si island formation in SAPO-34, J. Phys. Chem. C 119(2015) 2086-2095. [30] G. Raveendra, L. Congming, Y. Cheng, F. Meng, Z. Li, Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts, New J. Chem. 42(6) (2018) 4419-4431. [31] M.-Y. He, J.G. Ekerdt, Methanol formation on zirconium dioxide, J. Catal. 90(1984) 17-23. [32] J. Kondo, H. Abe, Y. Sakata, K. Maruya, K. Domen, T. Onishi, Infrared studies of adsorbed species of H2, CO and CO2 over ZrO2, J. Chem. Soc. Faraday Trans. 84(2) (1988) 511-519. [33] X. Liu, W. Zhou, Y. Yang, K. Cheng, J. Kang, L. Zhang, G. Zhang, X. Min, Q. Zhang, W. Ye, Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates, Chem. Sci. 9(20) (2018) 4708-4718. [34] H. Huang, Y. Yu, M. Zhang, CO dissociation mechanism on Mn-doped Fe(100) surface:a computational investigation, Catal. Lett. 150(6) (2019) 1618-1627. [35] F. Fazlollahi, M. Sarkari, H. Gharebaghi, H. Atashi, M.M. Zarei, A.A. Mirzaei, W.C. Hecker, Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch catalyst and its catalytic kinetics for the hydrogenation of carbon monoxide, Chin. J. Chem. Eng. 21(5) (2013) 507-519. [36] P. Lu, D. Shen, S. Cheng, E. Hondo, L. Gapu Chizema, C. Wang, X. Gai, C. Lu, R. Yang, The design of a CZ@H-β-P catalyst with core shell structure and its application in LPG synthesis from syngas, Fuel 223(2018) 157-163. [37] G.P. van der Laan, A.A.C.M. Beenackers, Hydrocarbon selectivity model for the gas-solid Fischer-Tropsch synthesis on precipitated Iron catalysts, Ind. Eng. Chem. Res. 38(4) (1999) 1277-1290. |