[1] X. Zhang, Y. Geng, S. Shao, J. Wilson, X. Song, W. You, China's non-fossil energy development and its 2030 CO2 reduction targets:The role of urbanization, Appl. Energy 261(2020) 114353. [2] Y. Duan, L. Duan, J. Wang, E.J. Anthony, Observation of simultaneously low CO, NOx and SO2 emission during oxycoal combustion in a pressurized fluidized bed, Fuel 242(2019) 374-381. [3] D. Bielsa, A. Zaki, P.L. Arias, A. Faik, Improving the redox performance of Mn2O3/Mn3O4 pair by Si doping to be used as thermochemical energy storage for concentrated solar power plants, Sol. Energy 204(2020) 144-154. [4] L. Andre, S. Abanades, G. Flamant, Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage, Renew. Sust. Energ. Rev. 64(2016) 703-715. [5] I. Fujii, K. Tsuchiya, M. Higano, J. Yamada, Studies of an energy-storage system by use of the reversible chemical-reaction-CaO+H2O reversible Ca(OH)2, Sol. Energy 34(1985) 367-377. [6] J. Samms, B.E. Evans, Thermal dissociation of Ca(OH)2 at elevated pressures, J. Appl. Chem. 18(1968) 5-8. [7] Y.A. Criado, M. Alonso, J.C. Abanades, Z. Anxionnaz-Minvielle, Conceptual process design of a CaO/Ca(OH)2 thermochemical energy storage system using fluidized bed reactors, Appl. Therm. Eng. 73(2014) 1087-1094. [8] M. Schmidt, M. Linder, Power generation based on the Ca(OH)2/CaO thermochemical storage system-experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design, Appl. Energy 203(2017) 594-607. [9] M. Schmidt, A. Gutierrez, M. Linder, Thermochemical energy storage with CaO/Ca(OH)2-experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor, Appl. Energy 188(2017) 672-681. [10] F. Schaube, I. Utz, A. Woerner, H. Mueller-Steinhagen, De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B:Validation of model, Chem. Eng. Res. Des. 91(2013) 865-873. [11] G. Seitz, R. Helmig, H. Class, A numerical modeling study on the influence of porosity changes during thermochemical heat storage, Appl. Energy 259(2020) 114152. [12] M. Schmidt, C. Szczukowski, C. Rosskopf, M. Linder, A. Woerner, Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide, Appl. Therm. Eng. 62(2014) 553-559. [13] F. Schaube, A. Kohzer, J. Schuetz, A. Woerner, H. Mueller-Steinhagen, De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermochemical heat storage. Part A:Experimental results, Chem. Eng. Res. Des. 91(2013) 856-864. [14] S. Lin, Y. Wang, Y. Suzuki, High-temperature CaO hydration/Ca(OH)2 decomposition over a multitude of cycles, Energ. Fuel. 23(2009) 2855-2861. [15] I. Fujii, M. Ishino, S. Akiyama, M.S. Murthy, K.S. Rajanandam, Behavior of Ca (OH)2/CaO pellet under dehydration and hydration, Sol. Energy 53(1994) 329-341. [16] K.G. Sakellariou, N.I. Tsongidis, G. Karagiannakis, A.G. Konstandopoulos, Shortlisting of composite CaO-based structured bodies suitable for thermochemical heat storage with the CaO/Ca(OH)2 reaction scheme, Energ. Fuel. 31(2017) 6548-6559. [17] C. Rosskopf, M. Haas, A. Faik, M. Linder, A. Woerner, Improving powder bed properties for thermochemical storage by adding nanoparticles, Energ. Convers. Manage. 86(2014) 93-98. [18] M. Gollsch, S. Afflerbach, B.V. Angadi, M. Linder, Investigation of calcium hydroxide powder for thermochemical storage modified with nanostructured flow agents, Sol. Energy 201(2020) 810-818. [19] Y.A. Criado, M. Alonso, J. Carlos Abanades, Enhancement of a CaO/Ca(OH)2 based material for thermochemical energy storage, Sol. Energy 135(2016) 800-809. [20] M.N. Azpiazu, J.M. Morquillas, A. Vazquez, Heat recovery from a thermal energy storage based on the Ca(OH)2/CaO cycle, Appl. Therm. Eng. 23(2003) 733-741. [21] J. Yan, C.Y. Zhao, Z.H. Pan, The effect of CO2 on Ca(OH)2 and Mg(OH)2 thermochemical heat storage systems, Energy 124(2017) 114-123. [22] T. Shikang, Z. Shuquan, L.I. Yuqi, J.C. Abanades, Steam coal utilization and carbon capture and storage in China, Clean Coal Technol. (2014) 66-69. [23] L. Ma, C. Qin, S. Pi, H. Cui, Fabrication of efficient and stable Li4SiO4-based sorbent pellets via extrusion-spheronization for cyclic CO2 capture, Chem. Eng. J. 379(2020) 122385. [24] Z. Ma, S. Wu, Y. Li, Research progress of CO2 capture with the assist CaO-based energy storage materials at coal-fired power station, Clean Coal Technol. 25(2019) 1-8. [25] Y. Yuan, H. You, L. Ricardez-Sandoval, Recent advances on first-principles modeling for the design of materials in CO2 capture technologies, Chinese J. Chem. Eng. 27(2019) 1554-1565. [26] T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki, K. Tejima, A twin fluidbed reactor for removal of CO2 from combustion processes, Chem. Eng. Res. Des. 77(1999) 62-68. [27] C.C. Dean, J. Blamey, N.H. Florin, M.J. Al-Jeboori, P.S. Fennell, The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production, Chem. Eng. Res. Des. 89(2011) 836-855. [28] A. MacKenzie, D.L. Granatstein, E.J. Anthony, J.C. Abanades, Economics of CO2 capture using the calcium cycle with a pressurized fluidized bed combustor, Energ. Fuel. 21(2007) 920-926. [29] J. Blamey, E.J. Anthony, J. Wang, P.S. Fennell, The calcium looping cycle for large-scale CO2 capture, Prog. Energ. Combust. 36(2010) 260-279. [30] P. Sun, J.R. Grace, C.J. Lim, E.J. Anthony, The effect of CaO sintering on cyclic CO2 capture in energy systems, AIChE J. 53(2007) 2432-2442. [31] Z. Li, Y. Liu, N. Cai, Understanding the enhancement effect of high-temperature steam on the carbonation reaction of CaO with CO2, Fuel 127(2014) 88-93. [32] J. Blamey, V. Manovic, E.J. Anthony, D.R. Dugwell, P.S. Fennell, On steam hydration of CaO-based sorbent cycled for CO2 capture, Fuel 150(2015) 269-277. [33] B. Arias, G.S. Grasa, M. Alonso, J. Carlos-Abanades, Post-combustion calcium looping process with a highly stable sorbent activity by recarbonation, Energ. Environ. Sci. 5(2012) 7353-7359. [34] X. Liu, J. Shi, L. He, X. Ma, S. Xu, Modification of CaO-based sorbents prepared from calcium acetate for CO2 capture at high temperature, Chinese J. Chem. Eng. 25(2017) 572-580. [35] J. Chen, T. Shi, L. Duan, Z. Sun, E.J. Anthony, Microemulsion-derived, nanostructured CaO/CuO composites with controllable particle grain size to enhance cyclic CO2 capture performance for combined Ca/Cu looping process, Chem. Eng. J. 393(2020) 124716. [36] C. Luo, Y. Zheng, N. Ding, Q. Wu, G. Bian, C. Zheng, Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture, Ind. Eng. Chem. Res. 49(2010) 11778-11784. [37] J. Chen, L. Duan, Z. Sun, Accurate control of cage-like CaO hollow microspheres for enhanced CO2 capture in calcium looping via a template-assisted synthesis approach, Environ. Sci. Technol. 53(2019) 2249-2259. [38] V. Manovic, E.J. Anthony, D. Loncarevic, CO2 looping cycles with CaO-based sorbent pretreated in CO2 at high temperature, Chem. Eng. Sci. 64(2009) 3236-3245. [39] S.M. Hashemi, D. Karami, N. Mahinpey, Solution combustion synthesis of zirconia-stabilized calcium oxide sorbents for CO2 capture, Fuel 269(2020) 117432. [40] F.N. Ridha, V. Manovic, A. Macchi, M.A. Anthony, E.J. Anthony, Assessment of limestone treatment with organic acids for CO2 capture in Ca-looping cycles, Fuel Process. Technol. 116(2013) 284-291. [41] Y. Li, C. Zhao, C. Qu, L. Duan, Q. Li, C. Liang, CO2 capture using CaO modified with ethanol/water solution during cyclic calcination/carbonation, Chem. Eng. Technol. 31(2008) 237-244. [42] A. Nawar, H. Ghaedi, M. Ali, M. Zhao, N. Iqbal, R. Khan, Recycling waste-derived marble powder for CO2 capture, Process Saf. Environ. 132(2019) 214-225. [43] W. Wang, W. Liu, J. Sun, Y. Hu, Y. Yang, C. Wen, Reactivation of CaO-based sorbents via multi-acidification under N2 or oxy-fuel (with and without SO2) calcination conditions, Fuel 244(2019) 13-21. [44] H.R. Radfarnia, M.C. Iliuta, Limestone acidification using citric acid coupled with two-step calcination for improving the CO2 sorbent activity, Ind. Eng. Chem. Res. 52(2013) 7002-7013. [45] M. Hajek, F. Skopal, Treatment of glycerol phase formed by biodiesel production, Bioresour. Technol. 101(2010) 3242-3245. [46] C. Chi, Y. Li, X. Ma, L. Duan, CO2 capture performance of CaO modified with byproduct of biodiesel at calcium looping conditions, Chem. Eng. J. 326(2017) 378-388. [47] Y. Li, R. Sun, C. Liu, H. Liu, C. Lu, CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles, Int. J. Greenh. Gas Con. 9(2012) 117-123. [48] J. Sun, W. Liu, Y. Hu, J. Wu, M. Li, X. Yang, W. Wang, M. Xu, Enhanced performance of extruded-spheronized carbide slag pellets for high temperature CO2 capture, Chem. Eng. J. 285(2016) 293-303. [49] Y. Yuan, Y. Li, L. Duan, H. Liu, J. Zhao, Z. Wang, CaO/Ca(OH)2 thermochemical heat storage of carbide slag from calcium looping cycles for CO2 capture, Energ. Convers. Manage. 174(2018) 8-19. [50] C. Ortiz, R. Chacartegui, J.M. Valverde, A. Alovisio, J.A. Becerra, Power cycles integration in concentrated solar power plants with energy storage based on calcium looping, Energ. Convers. Manage. 149(2017) 815-829. [51] V. Manovic, E.J. Anthony, Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles, Environ. Sci. Technol. 41(2007) 1420-1425. [52] H. Chen, C. Zhao, Y. Li, X. Chen, CO2 capture performance of calcium-based sorbents in a pressurized carbonation/calcination loop, Energ. Fuel. 24(2010) 5751-5756. |