[1] X. Zhang, Z. Song, R. Gani, T. Zhou, Comparative economic analysis of physical, chemical, and hybrid absorption processes for carbon capture, Ind. Eng. Chem. Res. 59 (5) (2020) 2005-2012. https://doi.org/10.1021/acs.iecr.9b05510 [2] D.C. Miller, J.T. Litynski, L.A. Brickett, B.D. Morreale, Toward transformational carbon capture systems, AIChE J. 62 (1) (2016) 2-10. https://doi.org/10.1002/aic.15066 [3] Z.E. Zhang, T. Wang, M.J. Blunt, E.J. Anthony, A.H.A. Park, R.W. Hughes, P.A. Webley, J.Y. Yan, Advances in carbon capture, utilization and storage, Appl. Energy 278 (2020) 115627. http://dx.doi.org/10.1016/j.apenergy.2020.115627 [4] Z.W. Liang, K.Y. Fu, R. Idem, P. Tontiwachwuthikul, Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents, Chin. J. Chem. Eng. 24 (2) (2016) 278-288. http://dx.doi.org/10.1016/j.cjche.2015.06.013 [5] B. Zhao, F.Z. Liu, Z. Cui, C.J. Liu, H.R. Yue, S.Y. Tang, Y.Y. Liu, H.F. Lu, B. Liang, Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant:Process improvement, Appl. Energy 185 (2017) 362-375. http://dx.doi.org/10.1016/j.apenergy.2016.11.009 [6] H.L. Liu, X. Zhang, H.X. Gao, Z.W. Liang, R. Idem, P. Tontiwachwuthikul, Investigation of CO2 regeneration in single and blended amine solvents with and without catalyst, Ind. Eng. Chem. Res. 56 (27) (2017) 7656-7664. https://doi.org/10.1021/acs.iecr.7b00778 [7] U.H. Bhatti, A.K. Shah, J.N. Kim, J.K. You, S.H. Choi, D.H. Lim, S. Nam, Y.H. Park, I.H. Baek, Effects of transition metal oxide catalysts on MEA solvent regeneration for the post-combustion carbon capture process, ACS Sustainable Chem. Eng. 5 (7) (2017) 5862-5868. https://doi.org/10.1021/acssuschemeng.7b00604 [8] B.P. Mandal, M. Guha, A.K. Biswas, S.S. Bandyopadhyay, Removal of carbon dioxide by absorption in mixed amines:Modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions, Chem. Eng. Sci. 56 (21-22) (2001) 6217-6224. http://dx.doi.org/10.1016/S0009-2509(01)00279-2 [9] D.C. Zhu, M.X. Fang, Z. Lv, Z. Wang, Z.Y. Luo, Selection of blended solvents for CO2 absorption from coal-fired flue gas. part 1:Monoethanolamine (MEA)-based solvents, Energy Fuels 26 (1) (2012) 147-153. http://dx.doi.org/10.1021/ef2011113 [10] S.H. Zhang, Y. Shen, L.D. Wang, J.M. Chen, Y.Q. Lu, Phase change solvents for post-combustion CO2 capture:Principle, advances, and challenges, Appl. Energy 239 (2019) 876-897. http://dx.doi.org/10.1016/j.apenergy.2019.01.242 [11] L.D. Wang, S.H. Yu, Q.W. Li, Y.F. Zhang, S.L. An, S.H. Zhang, Performance of sulfolane/DETA hybrids for CO2 absorption:Phase splitting behavior, kinetics and thermodynamics, Appl. Energy 228 (2018) 568-576. http://dx.doi.org/10.1016/j.apenergy.2018.06.077 [12] F. Liu, M.X. Fang, N.T. Yi, T. Wang, Research on alkanolamine-based physical-chemical solutions as biphasic solvents for CO2 capture, Energy Fuels 33 (11) (2019) 11389-11398. http://dx.doi.org/10.1021/acs.energyfuels.9b02392 [13] Z.C. Xu, S.J. Wang, C.H. Chen, CO2 absorption by biphasic solvents:Mixtures of 1, 4-butanediamine and 2-(diethylamino)-ethanol, Int. J. Greenh. Gas Control 16 (2013) 107-115. http://dx.doi.org/10.1016/j.ijggc.2013.03.013 [14] Q. Ye, X.L. Wang, Y.Q. Lu, Screening and evaluation of novel biphasic solvents for energy-efficient post-combustion CO2 capture, Int. J. Greenh. Gas Control 39 (2015) 205-214. http://dx.doi.org/10.1016/j.ijggc.2015.05.025 [15] H. Machida, K. Oba, T. Tomikawa, T. Esaki, T. Yamaguchi, H. Horizoe, Development of phase separation solvent for CO2 capture by aqueous (amine + ether) solution, J. Chem. Thermodyn. 113 (2017) 64-70. http://dx.doi.org/10.1016/j.jct.2017.05.043 [16] W.D. Zhang, X.H. Jin, W.W. Tu, Q. Ma, M.L. Mao, C.H. Cui, Development of MEA-based CO2 phase change absorbent, Appl. Energy 195 (2017) 316-323. http://dx.doi.org/10.1016/j.apenergy.2017.03.050 [17] Y.E. Kim, J.H. Park, S.H. Yun, S.C. Nam, S.K. Jeong, Y.I. Yoon, Carbon dioxide absorption using a phase transitional alkanolamine-alcohol mixture, J. Ind. Eng. Chem. 20 (4) (2014) 1486-1492. http://dx.doi.org/10.1016/j.jiec.2013.07.036 [18] F. Barzagli, F. Mani, M. Peruzzini, Novel water-free biphasic absorbents for efficient CO2 capture, Int. J. Greenh. Gas Control 60 (2017) 100-109. http://dx.doi.org/10.1016/j.ijggc.2017.03.010 [19] L. Xu, Q. Yang, S. Wang, Absotpiton performance and Stratification Mechanism of Biphasic Absorbent[Bmim] [BF4]/MEA Aqueous Mixtures. CIESC Journal, 69 (2018) 5112-5119.(in Chinese) [20] W. Tian, K. Ma, J.Y. Ji, S.Y. Tang, S. Zhong, C.J. Liu, H.R. Yue, B. Liang, Nonaqueous MEA/PEG200 absorbent with high efficiency and low energy consumption for CO2 capture, Ind. Eng. Chem. Res. 60 (10) (2021) 3871-3880. https://doi.org/10.1021/acs.iecr.0c05294 [21] T. Davran-Candan, DFT modeling of CO2 interaction with various aqueous amine structures, J. Phys. Chem. A 118 (25) (2014) 4582-4590. https://doi.org/10.1021/jp503929g [22] Y. Shen, H. Chen, J.L. Wang, S.H. Zhang, C.K. Jiang, J.X. Ye, L.D. Wang, J.M. Chen, Two-stage interaction performance of CO2 absorption into biphasic solvents:Mechanism analysis, quantum calculation and energy consumption, Appl. Energy 260 (2020) 114343. http://dx.doi.org/10.1016/j.apenergy.2019.114343 [23] X.M. Zhao, X.Y. Li, H.F. Lu, H.R. Yue, C.J. Liu, S. Zhong, K. Ma, S.Y. Tang, B. Liang, Predicting phase-splitting behaviors of an amine-organic solvent-water system for CO2 absorption:A new model developed by density functional theory and statistical and experimental methods, Chem. Eng. J. 422 (2021) 130389. http://dx.doi.org/10.1016/j.cej.2021.130389 [24] J.X. Cheng, K. Zhu, H.F. Lu, H.R. Yue, C.J. Liu, B. Liang, S.Y. Tang, Quantitative relationship between CO2 absorption capacity and amine water system:DFT, statistical, and experimental study, Ind. Eng. Chem. Res. 58 (31) (2019) 13848-13857. https://doi.org/10.1021/acs.iecr.9b01297 [25] X. Rozanska, E. Wimmer, F. de Meyer, Quantitative kinetic model of CO2 absorption in aqueous tertiary amine solvents, J. Chem. Inf. Model. 61 (4) (2021) 1814-1824. https://doi.org/10.1021/acs.jcim.0c01386 [26] S. Khaheshi, S. Riahi, M. Mohammadi-Khanaposhtani, H. Shokrollahzadeh, Prediction of amines capacity for carbon dioxide absorption based on structural characteristics, Ind. Eng. Chem. Res. 58 (20) (2019) 8763-8771. https://doi.org/10.1021/acs.iecr.9b00567 [27] S.J. Na, S.J. Hwang, H. Kim, I.H. Baek, K.S. Lee, Modeling of CO2 solubility of an aqueous polyamine solvent for CO2 capture, Chem. Eng. Sci. 204 (2019) 140-150. http://dx.doi.org/10.1016/j.ces.2019.04.021 [28] Z. Zhang, W.B. Zhao, J.J. Nong, D. Feng, Y.H. Li, Y. Chen, J. Chen, Liquid-solid phase-change behavior of diethylenetriamine in nonaqueous systems for carbon dioxide absorption, Energy Technol. 5 (3) (2017) 461-468. https://doi.org/10.1002/ente.201600351 [29] N.N. Ni, S.H. Yalkowsky, Prediction of setschenow constants, Int. J. Pharm. 254 (2) (2003) 167-172. https://pubmed.ncbi.nlm.nih.gov/12623192/ [30] N.A. Baker, P.H. Hünenberger, J.A. McCammon, Polarization around an ion in a dielectric continuum with truncated electrostatic interactions, J. Chem. Phys. 110 (22) (1999) 10679-10692. http://dx.doi.org/10.1063/1.479013 [31] H. Resat, J.A. McCammon, Free energy simulations:Correcting for electrostatic cutoffs by use of the Poisson equation, J. Chem. Phys. 104 (19) (1996) 7645-7651. http://dx.doi.org/10.1063/1.471472 [32] M. Görgényi, J. Dewulf, H. van Langenhove, K. Héberger, Aqueous salting-out effect of inorganic cations and anions on non-electrolytes, Chemosphere 65 (5) (2006) 802-810. https://pubmed.ncbi.nlm.nih.gov/16712901/ [33] S. Ahmed, N. Ferrando, J.C. de Hemptinne, J.P. Simonin, O. Bernard, O. Baudouin, Modeling of mixed-solvent electrolyte systems, Fluid Phase Equilibria 459 (2018) 138-157. http://dx.doi.org/10.1016/j.fluid.2017.12.002 [34] D.X. Zhao, L. Yu, L.D. Gong, C. Liu, Z.Z. Yang, Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model, J. Chem. Phys. 134 (19) (2011) 194115. http://dx.doi.org/10.1063/1.3590718 [35] Y.A. Budkov, A statistical field theory of salt solutions of 'hairy' dielectric particles, J Phys Condens Matter 32 (5) (2020) 055101. https://pubmed.ncbi.nlm.nih.gov/31604337/ [36] R.A.X. Persson, On the dielectric decrement of electrolyte solutions:A dressed-ion theory analysis, Phys. Chem. Chem. Phys. 19 (3) (2017) 1982-1987. https://pubmed.ncbi.nlm.nih.gov/28009858/ [37] M. Li, J. Li, Y.C. Lu, C.Y. Han, X.X. Wei, G.C. Ma, H.Y. Yu, Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds, Front. Environ. Sci. Eng. 15 (2) (2020) 1-8. http://dx.doi.org/10.1007/s11783-020-1316-z [38] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:Two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120 (1-3) (2008) 215-241. http://dx.doi.org/10.1007/s00214-007-0310-x [39] E.G. Hohenstein, S.T. Chill, C.D. Sherrill, Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules, J. Chem. Theory Comput. 4 (12) (2008) 1996-2000. https://doi.org/10.1021/ct800308k [40] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132 (15) (2010) 154104. https://pubmed.ncbi.nlm.nih.gov/20423165/ [41] T. Lu, F.W. Chen, Multiwfn:A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (5) (2012) 580-592. https://doi.org/10.1002/jcc.22885 [42] A. Hartono, E.F. da Silva, H. Grasdalen, H.F. Svendsen, Qualitative determination of species in DETA-H2O-CO2 system using 13C NMR spectra, Ind. Eng. Chem. Res. 46 (1) (2007) 249-254. http://dx.doi.org/10.1021/ie0603868 [43] M.G. Cacace, E.M. Landau, J.J. Ramsden, The Hofmeister series:Salt and solvent effects on interfacial phenomena, Q. Rev. Biophys. 30 (3) (1997) 241-277. https://pubmed.ncbi.nlm.nih.gov/9394422/ [44] A.M. Hyde, S.L. Zultanski, J.H. Waldman, Y.L. Zhong, M. Shevlin, F. Peng, General principles and strategies for salting-out informed by the hofmeister series, Org. Process Res. Dev. 21 (9) (2017) 1355-1370. https://doi.org/10.1021/acs.oprd.7b00197 [45] W. Tu, Phase Separation Behavior of CO2 Phase Change Absorption development based on Salting out Effect, Beijing University of Chemical Technology, 2018 [46] M.M. Xu, S.J. Wang, L.Z. Xu, Screening of physical-chemical biphasic solvents for CO2 absorption, Int. J. Greenh. Gas Control 85 (2019) 199-205. http://dx.doi.org/10.1016/j.ijggc.2019.03.015 [47] Y.J. Qiu, H.F. Lu, Y.M. Zhu, Y.Y. Liu, K.J. Wu, B. Liang, Phase-change CO2 absorption using novel 3-dimethylaminopropylamine with primary and tertiary amino groups, Ind. Eng. Chem. Res. 59 (19) (2020) 8902-8910. https://doi.org/10.1021/acs.iecr.9b06886 |