[1] K. Wangpaiboon, N. Waiyaseesang, P. Panpetch, T. Charoenwongpaiboon, S.A. Nepogodiev, S. Ekgasit, R.A. Field, R. Pichayangkura, Characterisation of insoluble a-1,3-/a-1,6 mixed linkage glucan produced in addition to soluble a-1,6-linked dextran by glucansucrase (DEX-N) from Leuconostoc citreum ABK- 1, Int. J. Biol. Macromol. 152(2020) 473-482. [2] A. Synytsya, M. Novák, Structural diversity of fungal glucans, Carbohydr. Polym. 92(1) (2013) 792-809. [3] J. Gangoiti, T. Pijning, L. Dijkhuizen, Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing a-glucans from starch and sucrose, Biotechnol. Adv. 36(1) (2018) 196-207. [4] B. Wang, Q. Song, F. Zhao, H. Xiao, Z. Zhou, Y.e. Han, Purification and characterization of dextran produced by Leuconostoc pseudomesenteroides PC as a potential exopolysaccharide suitable for food applications, Process Biochem. 87(2019) 187-195. [5] K. Złotko, A. Wiater, A. Waśko, M. Pleszczyńska, R. Paduch, J. Jaroszuk-Ściseł, A. Bieganowski, A report on fungal (1→3)-α-d-glucans:properties, functions and application, Molecules 24(2019) 3972. [6] M. Malten, R. Hollmann, W.-D. Deckwer, D. Jahn, Production and secretion of recombinant Leuconostoc mesenteroides dextransucrase DsrS in Bacillus megaterium, Biotechnol. Bioeng. 89(2) (2005) 206-218. [7] P.M. Coutinho, E. Deleury, G.J. Davies, B. Henrissat, An evolving hierarchical family classification for glycosyltransferases, J. Mol. Biol. 328(2) (2003) 307- 317. [8] T.Q. Wang, H.X. Li, K.L. Nie, T.W. Tan, Immobilization of lipase on epoxy activated (1→3)-α-d-glucan isolated from Penicillium chrysongenum, Biosci. Biotechnol. Biochem. 70(2006) 2883-2888. [9] A. Wiater, R. Paduch, M. Pleszczyńska, K. Próchniak, A. Choma, M. KandeferSzerszeń, J. Szczodrak, α-(1→3)-d-Glucans from fruiting bodies of selected macromycetes fungi and the biological activity of their carboxymethylated products, Biotechnol. Lett. 33(2011) 787-795. [10] F. Yangilar, P.O. Yildiz, Microbial polysaccharides and the applications in food industry, J. Biotechnol. 231(2016) S38. [11] F.R. Seymour, R.L. Julian, A. Jeanes, B.L. Lamberts, Structural analysis of insoluble d-glucans by fourier-transform, infrared difference-spectrometry:correlation between structures of dextrans from strains of leuconostoc mesenteroides and of d-glucans from strains of streptococcus mutans, Carbohydr. Res. 86(1980) 227-246. [12] G.L. Côté, C.D. Skory, Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118, Appl. Microbiol. Biotechnol. 93(6) (2012) 2387-2394. [13] Z. Chen, D. Ni, W. Zhang, T. Stressler, W. Mu, Lactic acid bacteria-derived aglucans:From enzymatic synthesis to miscellaneous applications, Biotechnol. Adv. 47(2021) 107708. [14] M. Miao, A. Bai, B.o. Jiang, Y. Song, S.W. Cui, T. Zhang, Characterisation of a novel water-soluble polysaccharide from Leuconostoc citreum SK24.002, Food Hydrocoll. 36(2014) 265-272. [15] X.G. Li, Z.K. Wang, F.J. Lu, H.M. Zhang, J.W. Tian, L.L. He, Y.W. Chu, Y.Q. Tian, Actinocorallia populi sp. nov., an endophytic actinomycete isolated from a root of Populus adenopoda (Maxim.), Int. J. Syst. Evol. Microbiol. 68(2018) 2325- 2330. [16] D.H. Huson, D. Bryant, Application of phylogenetic networks in evolutionary studies, Mol. Biol. Evol. 23(2006) 254-267. [17] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5:Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28(2011) 2731-2739. [18] W. Bejar, V. Gabriel, M. Amari, S. Morel, M. Mezghani, E. Maguin, C. Fontagné- Faucher, S. Bejar, H. Chouayekh, Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives, Int. J. Biol. Macromol. 52(2013) 125-132. [19] A. Romaní, R. Yáñez, G. Garrote, J.L. Alonso, J.C. Parajó, Sugar production from cellulosic biosludges generated in a water treatment plant of a Kraft pulp mill, Biochem. Eng. J. 37(3) (2007) 319-327. [20] B.J. Tindall, R. Rosselló-Móra, H.J. Busse, W. Ludwig, P. Kämpfer, Notes on the characterization of prokaryote strains for taxonomic purposes, Int. J. Syst. Evol. Microbiol. 60(2010) 249-266. [21] M. Santos, A. Rodrigues, J.A. Teixeira, Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f), Biochem. Eng. J. 25(1) (2005) 1-6. [22] W. Zhang, J. Zhu, X. Zhu, M. Song, T. Zhang, F. Xin, W. Dong, J. Ma, M. Jiang, Expression of global regulator IrrE for improved succinate production under high salt stress by Escherichia coli, Bioresour. Technol. 254(2018) 151-156. [23] W. Zhang, Y. Tao, M. Wu, F. Xin, W. Dong, J. Zhou, J. Gu, J. Ma, M. Jiang, Adaptive evolution improves acid tolerance and succinic acid production in Actinobacillus succinogenes, Process Biochem. 98(2020) 76-82. [24] B.H.A. Rehm, Bacterial polymers:biosynthesis, modifications and applications, Nat. Rev. Microbiol. 8(2010) 578-592. [25] R. Du, X. Qiao, F. Zhao, Q. Song, Q. Zhou, Y.u. Wang, L. Pan, Y.e. Han, Z. Zhou, Purification, characterization and antioxidant activity of dextran produced by Leuconostoc pseudomesenteroides from homemade wine, Carbohydr. Polym. 198(2018) 529-536. [26] P.Y. Zhang, L.N. Zhang, S.Y. Cheng, Chemical structure and molecular weights of α-(1→3)-D-Glucan from Lentinus edodes, Biosci. Biotechnol. Biochem. 63(1999) 1197-1202. [27] K.I. Shingel, Determination of structural peculiarities of dexran, pullulan and cirradiated pullulan by Fourier-transform IR spectroscopy, Carbohydr. Res. 337(16) (2002) 1445-1451. [28] M.-S. Bounaix, V. Gabriel, S. Morel, H. Robert, P. Rabier, M. Remaud-Siméon, B. Gabriel, C. Fontagné-Faucher, Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria, J. Agric. Food Chem. 57(22) (2009) 10889-10897. [29] R.K. Purama, P. Goswami, A.T. Khan, A. Goyal, Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640, Carbohydr. Polym. 76(1) (2009) 30-35. [30] F.R. Seymour, R.D. Knapp, E.C.M. Chen, A. Jeanes, S.H. Bishop, Structural analysis of dextrans containing 2-O-α-d-glucosylated α-d-glucopyranosyl residues at the branch points, by use of 13C-nuclear magnetic resonance spectroscopy and gas-liquid chromatography-mass spectrometry, Carbohydr. Res. 71(1) (1979) 231-250. [31] F.R. Seymour, R.D. Knapp, S.H. Bishop, Correlation of the structure of dextrans to their 1H-n.m.r. Spectra, Carbohydr. Res. 74(1) (1979) 77-92. [32] N.H. Maina, M. Tenkanen, H. Maaheimo, R. Juvonen, L. Virkki, NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa, Carbohydr. Res. 343(9) (2008) 1446-1455. [33] K. Wangpaiboon, P. Padungros, S. Nakapong, T. Charoenwongpaiboon, M. Rejzek, R.A. Field, R. Pichyangkura, An α-1,6-and α-1,3-linked glucan produced by Leuconostoc citreum ABK-1 alternansucrase with nanoparticle and filmforming properties, Sci. Rep. 8(2018) 8340. [34] R. Shukla, S. Shukla, V. Bivolarski, I. Iliev, I. Ivanova, A. Goyal, Structural characterization of insoluble dextran produced by Leuconostoc mesenteroides NRRL B-1149 in the presence of maltose, Food Technol. Biotechnol. 3(2011) 291-296. [35] P.A. Padmanabhan, D.-S. Kim, Production of insoluble dextran using cell-bound dextransucrase of Leuconostoc mesenteroides NRRL B-523, Carbohydr. Res. 337(17) (2002) 1529-1533. [36] G.L. Côté, T.D. Leathers, Insoluble glucans from planktonic and biofilm cultures of mutants of Leuconostoc mesenteroides NRRL B-1355, Appl. Microbiol. Biotechnol. 82(1) (2009) 149-154. [37] W.A. Belli, R.E. Marquis, Catabolite modification of acid tolerance of Streptococcus mutans GS-5, Oral Microbiol. Immunol. 9(1) (1994) 29-34. [38] Z. Ren, L.L. Chen, J.Y. Li, Y.Q. Li, Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity, J. Oral Microbiol. 8(2016) 31095. [39] R. Du, X. Qiao, Y.u. Wang, B.o. Zhao, Y.e. Han, Z. Zhou, Determination of glucansucrase encoding gene in Leuconostoc mesenteroides, Int. J. Biol. Macromol. 137(2019) 761-766. |