[1] K. Wang, X. Guo, P.F. Zhao, L.Q. Zhang, C.G. Zheng, CO2 capture of limestone modified by hydration-dehydration technology for carbonation/calcination looping, Chem. Eng. J. 173(2011) 158-163. [2] H. Lu, E.P. Reddy, P.G. Smirniotis, Calcium oxide based sorbents for capture of carbon dioxide at high temperatures, Ind. Eng. Chem. Res. 45(2006) 3944-3949. [3] M.V. Iyer, H. Gupta, B.B. Sakadjian, L.-S. Fan, Multicyclic study on the simultaneous carbonation and sulfation of high-reactivity CaO, Ind. Eng. Chem. Res. 43(2004) 3939-3949. [4] D. Alvarez, M. Pena, A.G. Borrego, Behavior of different calcium-based sorbents in a calcination/carbonation cycle for CO2 capture, Energy Fuel 21(2007) 1534-1542. [5] S.S. Kazi, A. Aranda, J. Meyer, J. Mastin, High performance CaO-based sorbents for pre-and post-combustion CO2 capture at high temperature, Energy Procedia 63(2014) 2207-2215. [6] Z.S. Li, Y. Liu, N.S. Cai, Understanding the enhancement effect of high-temperature steam on the carbonation reaction of CaO with CO2, Fuel 127(2014) 88-93. [7] H. Dieter, A.R. Bidwe, G. Varela-Duelli, A. Charitos, C. Hawthorne, G. Scheffknecht, Development of the calcium looping CO2 capture technology from lab to pilot scale at IFK, University of Stuttgart, Fuel 127(2014) 23-27. [8] J. Ströhle, M. Junk, J. Kremer, A. Galloy, B. Epple, Carbonate looping experiments in a 1 MWth pilot plant and model validation, Fuel 127(2014) 13-22. [9] A. Sánchez-Biezma, J. Paniagua, L. Diaz, M. Lorenzo, J. Alvarez, D. Martínez, B. Arias, M.E. Diego, J.C. Abanades, Testing postcombustion CO2 capture with CaO in a 1.7 MWt pilot facility, Energy Procedia 37(2013) 1-8. [10] C. Ortiz, R. Chacartegui, J.M. Valverde, J.A. Becerra, A new integration model of the calcium looping technology into coal fired power plants for CO2 capture, Appl. Energy 169(2016) 408-420. [11] M.J. Al-Jeboori, M. Nguyen, C. Dean, P.S. Fennell, Improvement of limestone-based CO2 sorbents for ca looping by HBr and other mineral acids, Ind. Eng. Chem. Res. 52(2013) 1426-1433. [12] R.Y. Sun, Y.J. Li, S.M. Wu, C.T. Liu, H.L. Liu, C.M. Lu, Enhancement of CO2 capture capacity by modifying limestone with propionic acid, Powder Technol. 233(2013) 8-14. [13] R. Filitz, A.M. Kierzkowska, M. Broda, C.R. Müller, Highly efficient CO2 sorbents:Development of synthetic, calcium-rich dolomites, Sci. Technol. 46(2012) 559-565. [14] Y.J. Li, C.S. Zhao, Q.Q. Ren, L.B. Duan, H.C. Chen, X.P. Chen, Effect of rice husk ash addition on CO2 capture behavior of calcium-based sorbent during calcium looping cycle, Fuel Process. Technol. 90(2009) 825-834. [15] M. Olivares-Marín, E.M. Cuerda-Correa, A. Nieto-Sánchez, S. García, C. Pevida, S. Román, Influence of morphology, porosity and crystal structure of CaCO3 precursors on the CO2 capture performance of CaO-derived sorbents, Chem. Eng. J. 217(2013) 71-81. [16] S.F. Wu, T.H. Beum, J.I. Yang, J.N. Kim, Properties of Ca-base CO2 sorbent using ca(OH)2 as precursor, Ind. Eng. Chem. Res. 46(2007) 7896-7899. [17] D. Karami, N. Mahinpey, Highly active CaO-based sorbents for CO2 capture using the precipitation method, preparation and characterization of the sorbent powder, Ind. Eng. Chem. Res. 51(2012) 4567-4572. [18] T. Witoon, T. Mungcharoen, J. Limtrakul, Biotemplated synthesis of highly stable calcium-based sorbents for CO2 capture via a precipitation method, Appl. Energy 118(2014) 32-40. [19] C. Luo, Y. Zheng, C.G. Zheng, J.J. Yin, C.L. Qin, B. Feng, Manufacture of calcium-based sorbents for high temperature cyclic CO2 capture via a sol-gel process, Int. J. Greenhouse Gas Control 12(2013) 193-199. [20] A. Akgsornpeak, T. Witoon, T. Mungcharoen, J. Limtrakul, Development of synthetic CaO sorbents via CTAB-assisted sol-gel method for CO2 capture at high temperature, Chem. Eng. J. 237(2014) 189-198. [21] H. Lu, A. Khan, S.E. Pratsinis, P.G. Smirniotis, Flame-made durable doped-CaO nanosorbents for CO2 capture, Energy Fuel 23(2009) 1093-1100. [22] D.C. Ozcan, B.H. Shanks, T.D. Wheelock, Improving the stability of a CaO-based sorbent for CO2 by thermal pretreatment, Ind. Eng. Chem. Res. 50(2011) 6933-6942. [23] J.J. Yin, C. Zhang, C.L. Qin, W.Q. Liu, H. An, G. Chen, B. Feng, Reactivation of calciumbased sorbent by water hydration for CO2 capture, Chem. Eng. J. 198-199(2012) 38-44. [24] Z.S. Li, Y. Liu, N.S. Cai, Effect of CaO hydration and carbonation on the hydrogen production from sorption enhanced water gas shift reaction, Int. J. Hydrog. Energy 37(2012) 11227-11236. [25] J. Blamey, M. Zhao, V. Manovic, E.J. Anthony, D.R. Dugwell, P.S. Fennell, A shrinking core model for steam hydration of CaO-based sorbents cycled for CO2 capture, Chem. Eng. J. 291(2016) 298-305. [26] H.R. Radfarnia, A. Sayari, A highly efficient CaO-based CO2 sorbent prepared by a citrate-assisted sol-gel technique, Chem. Eng. J. 262(2015) 913-920. [27] J.M. Valverde, A. Perejon, L.A. Perez-Maqueda, Enhancement of fast CO2 capture by a Nano-SiO2/CaO composite at Ca-looping conditions, Environ. Sci. Technol. 46(2012) 6401-6408. [28] R.V. Siriwardane, R.W. Stevens Jr., Novel regenerable magnesium hydroxide sorbents for CO2 capture at warm gas temperatures, Ind. Eng. Chem. Res. 48(2009) 2135-2141. [29] C.L. Qin, V. Manovic, J.Y. Ran, B. Feng, Simulation of the calcination of a core-in-shell CuO/CaCO3 particle for Ca-Cu chemical looping, Fuel 181(2016) 522-530. [30] L. Vieille, A. Govin, P. Grosseau, Improvements of calcium oxide based sorbents for multiple CO2 capture cycles, Powder Technol. 228(2012) 319-323. [31] R.Y. Sun, Y.J. Li, H.L. Liu, S.M. Wu, C.M. Lu, CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle, Appl. Energy 89(2012) 368-373. [32] C. Ma, The study of modified calcium-base sorbent for CO2 at high temperature (M.S. Thesis) Northwest Univ., China, 2010. [33] X.T. Liu, J.F. Shi, L. He, X.X. Ma, S.S. Xu, Modification of CaO-based sorbents prepared from calcium acetate for CO2 capture at high temperature, Chin. J. Chem. Eng. 25(2017) 572-580. [34] X.T. Liu, X.X. Ma, Modified calcium-based sorbent for CO2 capture at high temperature, The 12th Japan-China Symposium on Coal and C1 Chemistry, Fukuoka, Japan, 2013. [35] X.T. Liu, X.X. Ma, J.F. Shi, The effect of doping CeO2 for CO2 capture of calcium-based sorbent at high temperature, 30th Annual International Pittsburgh Coal Conference, Beijing, China, 2013. [36] X.T. Liu, X.X. Ma, S.S. Xu, C. Li, D. Lu, Modified calcium-based sorbent doped with CeO2 for CO2 capture at high temperature, The 7th International Conference on Separation Science and Technology, Chengdu, China, 2013. [37] V. Manovic, E.J. Anthony, Sintering and formation of a nonporous carbonate Shell at the surface of CaO-based sorbent particles during CO2-capture cycles, Energy Fuel 24(2010) 5700-5796. [38] Z.S. Li, N.S. Cai, Y.Y. Huang, Effect of preparation temperature on cyclic CO2 capture and multiple carbonation-calcination cycles for a new Ca-based CO2 sorbent, Ind. Eng. Chem. Res. 45(2006) 1911-1917. [39] M. Broda, A.M. Kierzkowska, C.R. Müller, Influence of the calcination and carbonation conditions on the CO2 uptake of synthetic Ca-based CO2 sorbents, Environ. Sci. Technol. 46(2012) 10849-10856. |