Chinese Journal of Chemical Engineering ›› 2017, Vol. 25 ›› Issue (11): 1552-1562.DOI: 10.1016/j.cjche.2017.05.005
Xianzhu Huang1, Jian Wu1,2, Yudan Zhu1, Yumeng Zhang1, Xin Feng1, Xiaohua Lu1
收稿日期:
2016-11-02
修回日期:
2017-05-14
出版日期:
2017-11-28
发布日期:
2018-01-18
通讯作者:
Yudan Zhu,E-mail addresses:ydzhu@njtech.edu.cn;Xiaohua Lu, E-mail addresses:xhlu@njtech.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21176112, 21576130, 21490584, 51005123), Qing Lan Project, the State Key Laboratory of Materials-Oriented Chemical Engineering (KL15-03), Specialized Research Fund for the Doctoral Program of Higher Education (20133221110001) and the Natural Science Foundation of Jiangsu Province (BK20130062).
Xianzhu Huang1, Jian Wu1,2, Yudan Zhu1, Yumeng Zhang1, Xin Feng1, Xiaohua Lu1
Received:
2016-11-02
Revised:
2017-05-14
Online:
2017-11-28
Published:
2018-01-18
Contact:
Yudan Zhu,E-mail addresses:ydzhu@njtech.edu.cn;Xiaohua Lu, E-mail addresses:xhlu@njtech.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21176112, 21576130, 21490584, 51005123), Qing Lan Project, the State Key Laboratory of Materials-Oriented Chemical Engineering (KL15-03), Specialized Research Fund for the Doctoral Program of Higher Education (20133221110001) and the Natural Science Foundation of Jiangsu Province (BK20130062).
摘要: How to reduce flow resistance of nano-confined fluids to achieve a high flux is a new challenge for modern chemical engineering applications, such as membrane separation and nanofluidic devices. Traditional models are inapplicable to explain the significant differences in the flow resistance of different liquid-solid systems. On the other hand, friction reduction in liquid nano-lubrication has received considerable attention during the past decades. Both fields are exposed to a common scientific issue regarding friction reduction during liquid-solid relative motion at nanoscale. A promising approach to control the flow resistance of nano-confined fluids is to reference the factors affecting liquid nano-lubrication. In this review, two concepts of the friction coefficient derived from fluid flow and tribology were discussed to reveal their intrinsic relations. Recent progress on low or ultra-low friction coefficients in liquid nano-lubrication was summarized based on two situations. Finally, a new strategy was introduced to study the friction coefficient based on analyzing the intermolecular interactions through an atomic force microscope (AFM), which is a cutting-point to build a new model to study flowresistance at nanoscale.
Xianzhu Huang, Jian Wu, Yudan Zhu, Yumeng Zhang, Xin Feng, Xiaohua Lu. Flow-resistance analysis of nano-confined fluids inspired from liquid nano-lubrication:A review[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1552-1562.
Xianzhu Huang, Jian Wu, Yudan Zhu, Yumeng Zhang, Xin Feng, Xiaohua Lu. Flow-resistance analysis of nano-confined fluids inspired from liquid nano-lubrication:A review[J]. Chin.J.Chem.Eng., 2017, 25(11): 1552-1562.
[1] S.K. Bhatia, D. Nicholson, Modeling mixture transport at the nanoscale:Departure from existing paradigms, Phys. Rev. Lett. 100(23) (2008) 236103.[2] D.C. Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12(7) (2012) 3602-3608.[3] S.K. Bhatia, Modeling pure gas permeation in nanoporous materials and membranes, Langmuir 26(11) (2010) 8373-8385.[4] S.K.Bhatia,M.R.Bonilla,D.Nicholson,Moleculartransportinnanopores:Atheoretical perspective, Phys. Chem. Chem. Phys. 13(34) (2011) 15350-15383.[5] W. Sparreboom, A.V.D. Berg, J.C.T. Eijkel, Transport in nanofluidic systems:A review of theory and applications, New J. Phys. 12(1) (2010) 015004.[6] J.C.T. Eijkel, A.V.D. Berg, Nanofluidics:What is it and what can we expect from it, Microfluid. Nanofluid. 1(3) (2005) 249-267.[7] L. Bocquet, E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev. 39(3) (2010) 1073-1095.[8] R.P. Pandey, V.K. Shahi, Functionalized silica-chitosan hybrid membrane for dehydration of ethanol/water azeotrope:Effect of cross-linking on structure and performance, J. Membr. Sci. 444(2013) 116-126.[9] L. Vane, V. Namboodiri, G. Lin, M. Abar, F. Alvarez, Preparation of waterselective polybutadiene membranes and their use in drying alcohols by pervaporation and vapor permeation technologies, ACS Sustain. Chem. Eng. 4(8) (2016) 4442-4450.[10] X. Tong, B.P. Zhang, Y.S. Chen, Fouling resistant nanocomposite cation exchange membrane with enhanced power generation for reverse electrodialysis, J. Membr. Sci. 516(2016) 162-171.[11] J. Liu, J.S. Yuan, Z.Y. Ji, B.J. Wang, Y.C. Hao, X.F. Guo, Concentrating brine from seawater desalination process by nanofiltration-electrodialysis integrated membrane technology, Desalination 390(2016) 53-61.[12] R.C. Rollings, A.T. Kuan, J.A. Golovchenko, Ion selectivity of graphene nanopores, Nat. Commun. 7(2016) 11408.[13] J.K. Holt, H.K. Park, Y.M. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 3(12) (2006) 1034-1037.[14] A. Ghoufi, A. Szymczyk, P. Malfreyt, Ultrafast diffusion of ionic liquids confined in carbon nanotubes, Sci. Rep. 6(2016) 28518.[15] R.H. Tunuguntla, F.I. Allen, K. Kim, A. Belliveau, A. Noy, Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins, Nat. Nanotechnol. 11(7) (2016) 639-644.[16] A. Akbari, P. Sheath, S.T. Martin, S.T. Martin, D.B. Shinde, M. Shaibani, P.C. Banerjee, R. Tkacz, D. Bhattacharyya, M. Majumder, Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide, Nat. Commun. 7(2016) 10891.[17] H.W. Kim, H.W. Yoon, S.M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, J.Y. Choi, H.B. Park, Selective gas transport through fewlayered graphene and graphene oxide membranes, Science 342(6154) (2013) 91-95.[18] S.N. Yu, Z.Y. Jiang, S. Yang, H. Ding, B.F. Zhou, K. Gu, D. Yang, F.S. Pan, B.Y. Wang, S. Wang, X.Z. Cao, Highly swelling resistant membranes for model gasoline desulfurization, J. Membr. Sci. 514(2016) 440-449.[19] J. Shen, G.P. Liu, K. Huang, Z.Y. Chu, W.Q. Jin, N.P. Xu, Subnanometer twodimensional graphene oxide channels for ultrafast gas sieving, ACS Nano 10(3) (2016) 3398-3409.[20] S.K. Bhatia, D. Nicholson, Friction between solids and adsorbed fluids is spatially distributed at the nanoscale, Langmuir 29(47) (2013) 14519-14526.[21] S. Balasubramanian, C.J. Mundy, Calculation of friction coefficient of a solid-liquid interface via a non-equilibrium molecular dynamics simulation, Bull. Mater. Sci. 22(5) (1999) 873-876.[22] H. Daiguji, Ion transport in nanofluidic channels, Chem. Soc. Rev. 39(3) (2010) 901-911.[23] S.Nakaoka, Y. Yamaguchi, T. Omori,M.Kagawa, T. Nakajima, K.Fujimura,Molecular dynamics analysis of the velocity slip of a water and methanol liquid mixture, Phys. Rev. E 92(2) (2015) 022402.[24] J.T. Cheng, N. Giordano, Fluid flow through nanometer-scale channels, Phys. Rev. E 65(3) (2002) 031206.[25] V.P. Sokhan, D. Nicholson, N. Quirke, Fluid flow in nanopores:An examination of hydrodynamic boundary conditions, J. Phys. Chem. 115(8) (2001) 3878-3887.[26] V.P. Sokhan, D. Nicholson, N. Quirke, Fluid flow in nanopores:Accurate boundary conditions for carbon nanotubes, J. Chem. Phys. 117(18) (2002) 8531-8539.[27] Y.X. Zhu, S. Granick, Limits of the hydrodynamic no-slip boundary condition, Phys. Rev. Lett. 88(10) (2002) 106102.[28] A. Waghe, J.C. Rasaiah, G. Hummer, Filling and emptying kinetics of carbon nanotubes in water, J. Chem. Phys. 117(23) (2002) 10789-10795.[29] S. Joseph, N.R. Aluru, Why are carbon nanotubes fast transporters of water, Nano Lett. 8(2) (2008) 452-458.[30] T. Ohba, K. Kaneko, M. Endo, K. Hata, H. Kanoh, Rapid water transportation through narrow one-dimensional channels by restricted hydrogen bonds, Langmuir 29(4) (2013) 1077-1082.[31] C.L. Wang, B.H. Wen, Y.S. Tu, R.Z. Wan, H.P. Fang, Friction reduction at a superhydrophilic surface:Role of ordered water, J. Phys. Chem. C 119(21) (2015) 11679-11684.[32] R.R. Nair, H.A. Wu, P.N. Jayaram, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335(6067) (2012) 442-444.[33] R.S. Voronov, D.V. Papavassiliou, L.L. Lee, Boundary slip and wetting properties of interfaces:Correlation of the contact angle with the slip length, J. Chem. Phys. 124(20) (2006) 204701.[34] M. Cieplak, J. Koplik, J.R. Banavar, Boundary conditions at a fluid-solid interface, Phys. Rev. Lett. 86(5) (2001) 803-806.[35] D. Savio, N. Fillot, P. Vergne, H. Hetzler, W. Seemann, G.E.M. Espejel, A multiscale study on the wall slip effect in a ceramic-steel contact with nanometer-thick lubricant film by a nano-to-elastohydrodynamic lubrication approach, Trans. ASME J. Tribol. 137(3) (2015) 031502.[36] O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil, Philos. Trans. R. Soc. Lond. 177(1886) 157-234.[37] B. Bhushan, Introduction to Tribology, 2nd edition John Wiley & Sons Inc., New York, 2013, 399-409.[38] D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic Press, London, 1990, 77-78.[39] L. Bocquet, J.L. Barrat, On the Green-Kubo relationship for the liquid-solid friction coefficient, J. Chem. Phys. 139(4) (2013) 044704.[40] L. Bocquet, J.L. Barrat, Flow boundary conditions from nano-to micro-scales, Soft Matter 3(6) (2007) 685-693.[41] B.R. Alvarado, S. Kumar, G.P. Peterson, Wettability transparency and the quasiuniversal relationship between hydrodynamic slip and contact angle, Appl. Phys. Lett. 108(7) (2016) 074105.[42] L. Bocquet, J.L. Barrat, Hydrodynamic boundary conditions, correlation functions, and kubo relations for confined fluids, Phys. Rev. E 49(4) (1994) 3079-3092.[43] H.G. Park, Y.S. Jung, Carbon nanofluidics of rapid water transport for energy applications, Chem. Soc. Rev. 43(2) (2014) 565-576.[44] K. Falk, F. Sedlmeier, L. Joly, R.R. Netz, L. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes:Superlubricity versus curvature dependent friction, Nano Lett. 10(10) (2010) 4067-4073.[45] K. Falk, F. Sedlmeier, L. Joly, R.R. Netz, L. Bocquet, Ultralow liquid/solid friction in carbon nanotubes:Comprehensive theory for alcohols, alkanes, OMCTS, and water, Langmuir 28(40) (2012) 14261-14272.[46] S.K. Kannam, B.D. Todd, J.S. Hansen, P.J. Daivis, How fast does water flow in carbon nanotubes, J. Chem. Phys. 138(9) (2013) 094701.[47] Y. Demirel, Nonequilibrium Thermodynamics:Transport and Rate Processes in Physical, Chemical and Biological Systems, 3rd edition Elsevier, Amsterdam, 2014463-464.[48] J.B.T. Green, M.T. McDermott, M.D. Porter, Nanometer-scale mapping of chemically distinct domains at well-defined organic interfaces using frictional force microscopy, J. Phys. Chem. 99(1995) 10960-10965.[49] A. Berman, C. Drummond, J. Israelachvili, Amontons' law at the molecular level, Tribol. Lett. 4(1998) 95-101.[50] Y.S. Leng, S.Y. Jiang, Dynamic simulations of adhesion and friction in chemical force microscopy, J. Am. Chem. Soc. 124(39) (2002) 11764-11770.[51] L.Z. Zhang, S.Y. Jiang, Molecular simulation study of nanoscale friction for alkyl monolayers on Si(111), J. Chem. Phys. 117(4) (2002) 1804-1811.[52] L.Z. Zhang, L.Y. Li, S.F. Chen, S.Y. Jiang, Measurements of friction and adhesion for alkyl monolayers on Si(111) by scanning force microscopy, Langmuir 18(2002) 5448-5456.[53] L.Z. Zhang, S.Y. Jiang, Molecular simulation study of nanoscale friction between alkyl monolayers on Si(111) immersed in solvents, J. Chem. Phys. 119(2) (2003) 765-770.[54] L.Z. Zhang, Y.S. Leng, S.Y. Jiang, Tip-based hybrid simulation study of frictional properties of self-assembled monolayers:Effects of chain length, terminal group, scan direction, and scan velocity, Langmuir 19(2003) 9742-9747.[55] J.H. Choo, R.P. Glovnea, A.K. Forrest, H.A. Spikes, A low friction bearing based on liquid slip at the wall, Trans. ASME J. Tribol. 129(3) (2007) 611-619.[56] M. Kalin, M. Polajnar, The effect of wetting and surface energy on the friction and slip in oil-lubricated contacts, Tribol. Lett. 52(2) (2013) 185-194.[57] I.R. Goldian, N. Kampf, A. Yeredor, J. Klein, On the question of whether lubricants fluidize in stick-slip friction, Proc. Natl. Acad. Sci. U. S. A. 112(23) (2015) 7117-7122.[58] R.D. Evans, J.D. Cogdell, G.A. Richter, G.L. Doll, Traction of lubricated rolling contacts between thin-film coatings and steel, Tribol. Trans. 52(1) (2008) 106-113.[59] Z. Fu, P.L. Wong, F. Guo, Effect of interfacial properties on EHL under pure sliding conditions, Tribol. Lett. 49(1) (2012) 31-38.[60] J.Y. Leong, T. Reddyhoff, S.K. Sinha, A.S. Holmes, H.A. Spikes, Hydrodynamic friction reduction in a MAC-hexadecane lubricated MEMS contact, Tribol. Lett. 49(1) (2012) 217-225.[61] D. Savio, N. Fillot, P. Vergne, M. Zaccheddu, A model for wall slip prediction of confined n-alkanes:Effect of wall-fluid interaction versus fluid resistance, Tribol. Lett. 46(1) (2012) 11-22.[62] D.M. Huang, C. Sendner, D. Horinek, R.R. Netz, L. Bocquet, Water slippage versus contact angle:A quasiuniversal relationship, Phys. Rev. Lett. 101(22) (2008) 226101.[63] M. Kalin, M. Polajnar, The wetting of steel, DLC coatings, ceramics and polymers with oils and water:The importance and correlations of surface energy, surface tension, contact angle and spreading, Appl. Surf. Sci. 293(2014) 97-108.[64] N. Fillot, H. Berro, P. Vergne, From continuous to molecular scale in modelling elastohydrodynamic lubrication:Nanoscale surface slip effects on film thickness and friction, Tribol. Lett. 43(3) (2011) 257-266.[65] R. Goldberg, L. Chai, S. Perkin, N. Kampf, J. Klein, Breakdown of hydration repulsion between charged surfaces in aqueous Cs+ solutions, Phys. Chem. Chem. Phys. 10(32) (2008) 4939-4945.[66] L. Ma, A. Gaisinskaya-Kipnis, N. Kampf, J. Klein, Origins of hydration lubrication, Nat. Commun. 6(2015) 6060.[67] U. Raviv, J. Klein, Fluidity of bound hydration layers, Science 297(2002) 1540-1542.[68] J. Seror, L.Y. Zhu, R. Goldberg, A.J. Day, J. Klein, Supramolecular synergy in the boundary lubrication of synovial joints, Nat. Commun. 6(2015) 6497.[69] C.X. Zhang, Y.H. Liu, S.Z. Wen, S. Wang, Poly(vinylphosphonic acid) (PVPA) on titanium alloy acting as effective cartilage-like superlubricity coatings, ACS Appl. Mater. Interfaces 6(20) (2014) 17571-17578.[70] N. Wang, A.M.T. Sfarghiu, D. Portinha, S. Descartes, E. Fleury, Y. Berthier, J.P. Rieu, Nanomechanical and tribological characterization of the mpc phospholipid polymer photografted onto rough polyethylene implants, Colloids Surf. B:Biointerfaces 108(2013) 285-294.[71] Y. Ishikawa, T. Sasada, Lubrication properties of hydrogel-coated polyethylene head, Mater. Trans. 45(4) (2004) 1041-1044.[72] I. Goldian, S. Jahn, P. Laaksonen, M. Linder, M. Kampf, J. Klein, Modification of interfacial forces by hydrophobin HFBI, Soft Matter 9(44) (2013) 10627.[73] D.C. Yue, T.B. Ma, Y.Z. Hu, J. Yeon, A.C.T. van Duin, H. Wang, J.B. Luo, Tribochemistry of phosphoric acid sheared between quartz surfaces:A reactive molecular dynamics study, J. Phys. Chem. C 117(48) (2013) 25604-25614.[74] J.J. Li, L. Ma, S.H. Zhang, C.H. Zhang, Y.H. Liu, J.B. Luo, Investigations on the mechanism of superlubricity achieved with phosphoric acid solution by direct observation, J. Appl. Phys. 114(11) (2013) 114901.[75] S.A. Whyte, N.J. Mosey, Behavior of two-dimensional hydrogen-bonded networks under shear conditions:A first-principles molecular dynamics study, J. Phys. Chem. C 119(1) (2015) 350-364.[76] J.J. Li, C.H. Zhang, L. Ma, Y.H. Liu, J.B. Luo, Superlubricity achieved with mixtures of acids and glycerol, Langmuir 29(1) (2013) 271-275.[77] M. Palacio, B. Bhushan, Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications, Adv. Mater. 20(6) (2008) 1194-1198.[78] W.J. Zhao, Y. Wang, L.P. Wang, M.W. Bai, Q.J. Xue, Influence of heat treatment on the micro/nano-tribological properties of ultra-thin ionic liquid films on silicon, Colloids Surf. A Physicochem. Eng. Aspect 361(1-3) (2010) 118-125.[79] J.B. Pu, D. Jiang, Y.F. Mo, L.P. Wang, Q.J. Xue, Micro/nano-tribological behaviors of crown-type phosphate ionic liquid ultrathin films on self-assembled monolayer modified silicon, Surf. Coat. Technol. 205(20) (2011) 4855-4863.[80] J. Sweeney, G.B. Webber, M.W. Rutland, R. Atkin, Effect of ion structure on nanoscale friction in protic ionic liquids, Phys. Chem. Chem. Phys. 16(31) (2014) 16651-16658.[81] O.Y. Fajardo, F. Bresme, A.A. Kornyshev, M. Urbakh, Electrotunable lubricity with ionic liquid nanoscale films, Sci. Rep. 5(2015) 7698.[82] H. Li, R.J. Wood, M.W. Rutland, R. Atkin, An ionic liquid lubricant enables superlubricity to be "switched on" in situ using an electrical potential, Chem. Commun. 50(33) (2014) 4368-4370.[83] A. Gaisinskaya-Kipnis, L. Ma, N. Kampf, J. Klein, Frictional dissipation pathways mediated by hydrated alkali metal ions, Langmuir 32(19) (2016) 4755-4764.[84] Y. Xue, Y. Wu, X.W. Pei, H.L. Duan, Q.J. Xue, F. Zhou, How solid-liquid adhesive property regulates liquid slippage on solid surfaces? Langmuir 31(1) (2015) 226-232.[85] M. Melillo, F.Q. Zhu, M.A. Snyder, J. Mittal, Water transport through nanotubes with varying interaction strength between tube wall and water, J. Phys. Chem. Lett. 2(23) (2011) 2978-2983.[86] I. Moskowitz, M.A. Snyder, J. Mittal, Water transport through functionalized nanotubes with tunable hydrophobicity, J. Phys. Chem. 141(18) (2014) 18C532.[87] R.S. Voronov, D.V. Papavassiliou, L.L. Lee, Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle, Ind. Eng. Chem. Res. 47(8) (2008) 2455-2477.[88] T.A. Ho, D.V. Papavassiliou, L.L. Lee, A. Striolo, Liquid water can slip on a hydrophilic surface, Proc. Natl. Acad. Sci. U. S. A. 108(39) (2011) 16170-16175.[89] B. Ramos-Alvarado, S. Kumar, G.P. Peterson, Hydrodynamic slip length as a surface property, Phys. Rev. E 93(2) (2016) 023101.[90] L. Liu, L. Zhang, Z.G. Sun, G. Xi, Graphene nanoribbon-guided fluid channel:A fast transporter of nanofluids, Nano 4(20) (2012) 6279-6283.[91] H. Qiu, X.C. Zeng, W.L. Guo, Water in inhomogeneous nanoconfinement:Coexistence of multilayered liquid and transition to ice nanoribbons, ACS Nano 9(10) (2015) 9877-9884.[92] M. Mario, S. Fernandez, M. Neek-Amal, F.M. Peeters, AA-stacked bilayer square ice between graphene layers, Phys. Rev. B 92(24) (2015) 245428.[93] A. Verdaguer, G.M. Sacha, H. Bluhm, M. Salmeron, Molecular structure of water at interfaces:Wetting at the nanometer scale, Chem. Rev. 106(4) (2006) 1478-1510.[94] M. Neek-Amal, F.M. Peeters, I.V. Grigorieva, A.K. Geim, Commensurability effects in viscosity of nanoconfined water, ACS Nano 10(3) (2016) 3685-3692.[95] T.D. Li, J.P. Gao, R. Szoszkiewicz, U. Landman, E. Riedo, Structured and viscous water in subnanometer gaps, Phys. Rev. B 75(11) (2007) 115415.[96] R. Renou, A. Szymczyk, G. Maurin, P. Malfreyt, A. Ghoufi, Superpermittivity of nanoconfined water, J. Chem. Phys. 142(18) (2015) 184706.[97] M. Watkins, B. Reischl, A simple approximation for forces exerted on an AFM tip in liquid, J. Chem. Phys. 138(15) (2013) 154703.[98] M. Watkins, M.L. Berkowitz, A.L. Shluger, Role of water in atomic resolution AFM in solutions, Phys. Chem. Chem. Phys. 13(27) (2011) 12584-12594.[99] J. Hassan, G. Diamantopoulos, D. Homouz, G. Papavassiliou, Water inside carbon nanotubes:Structure and dynamics, Nanotechnol. Rev. 5(3) (2016) 341-354.[100] A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, E. Tosatti, Colloquium:Modeling friction:From nanoscale to mesoscale, Rev. Mod. Phys. 85(2) (2013) 529-552.[101] Y.D. Zhu, Y. Ruan, Y.M. Zhang, L.H. Lv, X.H. Lu, Nanomaterial-oriented molecular simulations of ion behaviour in aqueous solution under nanoconfinement, Mol. Simul. 42(10) (2016) 784-798.[102] Y.D. Zhu, J. Zhou, X.H. Lu, X.J. Guo, L.H. Lv, Molecular simulations on nanoconfined water molecule behaviors for nanoporous material applications, Microfluid. Nanofluid. 15(2) (2013) 191-205.[103] J.K. Holt, Methods for probing water at the nanoscale, Microfluid. Nanofluid. 5(4) (2008) 425-442.[104] S.H. Zhang, Y.H. Liu, J.B. Luo, In situ observation of the molecular ordering in the lubricating point contact area, J. Appl. Phys. 116(1) (2014), 014302.[105] U. Bergmann, Ph. Wernet, P. Glatzel, M. Cavalleri, L.G.M. Pettersson, A. Nilsson, S.P. Cramer, X-ray raman spectroscopy at the oxygenkedge of water and ice:Implications on local structure models, Phys. Rev. B 66(9) (2002), 092107.[106] A.I. Kolesnikov, J.M. Zanotti, C.K. Loong, P. Thiyagarajan, Anomalously soft dynamics of water in a nanotube:A revelation of nanoscale confinement, Phys. Rev. Lett. 93(3) (2004) 035503.[107] M. Plazanet, F. Sacchetti, C. Petrillo, B. Demé, P. Bartolini, R. Torre, Water in a polymeric electrolyte membrane:Sorption/desorption and freezing phenomena, J. Membr. Sci. 453(2014) 419-424.[108] J.D. Smith, C.D. Cappa, K.R. Wilson, B.M. Messer, R.C. Cohen, R.J. Saykally, Energetics of hydrogen bond network rearrangements in liquid water, Science 306(29) (2004) 851-853.[109] Ph. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.A. Naslund, T.K. Hirsch, L. Ojamae, P. Glatzel, L.G.M. Pettersson, A. Nilsson, The structure of the first coordination shell in liquid water, Science 304(14) (2004).[110] A. Das, S. Jayanthi, H.S.M.V. Deepak, K.V. Ramanathan, A. Kumar, C. Dasgupta, A.K. Sood, Single-file diffusion of confined water inside SWNTS:An NMR study, ASC Nano 4(3) (2010) 1687-1695.[111] R. Kolvenbach, L.F. Gonzalez Peña, A. Jentys, J.A. Lercher, Diffusion of mixtures of light alkanes and benzene in nano-sized H-ZSM5, J. Phys. Chem. C 118(16) (2014) 8424-8434.[112] X. Liu, X.L. Pan, S.M. Zhang, X.W. Han, X.H. Bao, Diffusion of water inside carbon nanotubes studied by pulsed field gradient NMR spectroscopy, Langmuir 30(27) (2014) 8036-8045.[113] C.Y. Ruan, V.A. Lobastov, F. Vigliotti, S. Chen, A.H. Zewail, Ultrafast electron crystallography of interfacial water, Science 304(2004) 80-84.[114] S. Belfer, Y. Purinson, R. Fainshtein, Y. Radchenko, O. Kedem, Surface modification of commercial composite polyamide reverse osmosis membranes, J. Membr. Sci. 139(1998) 175-181.[115] S.Y. Kwak, D.W. Ihm, Use of atomic force microscopy and solid-state NMR spectroscopy to characterize structure-property-performance correlation in high-flux reverse osmosis (RO) membranes, J. Membr. Sci. 158(1999) 143-153.[116] J. Cho, G.A. John Pellegrino, Y. Yoon, Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes, and foulants characterization, Desalination 118(1998) 101-108.[117] B. Mi, D.G. Cahill, B.J. Mariñas, Physico-chemical integrity of nanofiltration/reverse osmosis membranes during characterization by Rutherford backscattering spectrometry, J. Membr. Sci. 291(1-2) (2007) 77-85.[118] M. Whitby, L. Cagnon, M. Thanou, N. Quirke, Enhanced fluid flow through nanoscale carbon pipes, Nano Lett. 8(9) (2008) 2632-2637.[119] Y.D. Zhu, L.Z. Zhang, X.H. Lu, L.H. Lv, X.M. Wu, Flow resistance analysis of nanoconfined water in silt pores by molecular simulations:Effect of pore wall interfacial properties, Fluid Phase Equilib. 362(2014) 235-241.[120] L.W. Zhu, P. Attard, C. Neto, Reliable measurements of interfacial slip by colloid probe atomic force microscopy. I. Mathematical modeling, Langmuir 27(11) (2011) 6701-6711.[121] L.W. Zhu, P. Attard, C. Neto, Reliable measurements of interfacial slip by colloid probe atomic force microscopy. Ⅱ. Hydrodynamic force measurements, Langmuir 27(11) (2011) 6712-6719.[122] L.W. Zhu, C. Neto, P. Attard, Reliable measurements of interfacial slip by colloid probe atomic force microscopy. Ⅲ. Shear-rate-dependent slip, Langmuir 28(7) (2012) 3465-3473.[123] R. An, Q.M. Yu, L.Z. Zhang, Y.D. Zhu, X.J. Guo, S.Q. Fu, L.C. Li, C.S. Wang, X.M. Wu, C. Liu, X.H. Lu, Simple physical approach to reducing frictional and adhesive forces on a TiO2 surface via creating heterogeneous nanopores, Langmuir 28(43) (2012) 15270-15277.[124] L.L.Zhu,Q.Gu, P.C.Sun,W. Chun, X.L.Wang, G.Xue,Characterization ofthemobility and reactivity of water molecules on TiO2 nanoparticles by 1H solid-state nuclear magnetic resonance, ACS Appl. Mater. Interfaces 5(20) (2013) 10352-10356.[125] K.E. Gubbins, Y. Long, M.S. Bartkowiak, Thermodynamics of confined nano-phases, J. Chem. Thermodyn. 74(2014) 169-183.[126] M.S. Bartkowiak, A. Sterczyńska, Y. Long, K.E. Gubbins, Influence of microroughness on the wetting properties of nano-porous silica matrices, Mol. Phys. 112(17) (2014) 2365-2371.[127] R. An, L.L. Huang, Y. Long, B. Kalanyan, X.H. Lu, K.E. Gubbins, Liquid-solid nanofriction and interfacial wetting, Langmuir 32(3) (2016) 743-750. |
[1] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K[J]. 中国化学工程学报, 2023, 60(8): 235-241. |
[2] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation[J]. 中国化学工程学报, 2023, 60(8): 262-274. |
[3] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column[J]. 中国化学工程学报, 2023, 59(7): 135-145. |
[4] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid[J]. 中国化学工程学报, 2023, 59(7): 210-221. |
[5] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models[J]. 中国化学工程学报, 2023, 59(7): 251-261. |
[6] | Junhao Wang, Shugang Ma, Peng Chen, Zhipeng Li, Zhengming Gao, J. J. Derksen. Mixing of miscible shear-thinning fluids in a lid-driven cavity[J]. 中国化学工程学报, 2023, 58(6): 112-123. |
[7] | Weikai Ren, Runsong Dai, Ningde Jin. Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids[J]. 中国化学工程学报, 2023, 58(6): 179-194. |
[8] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model[J]. 中国化学工程学报, 2023, 58(6): 205-223. |
[9] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K[J]. 中国化学工程学报, 2023, 58(6): 224-233. |
[10] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm[J]. 中国化学工程学报, 2023, 58(6): 244-255. |
[11] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization[J]. 中国化学工程学报, 2023, 57(5): 10-16. |
[12] | Li Xia, Yule Pan, Tingting Zhao, Xiaoyan Sun, Shaohui Tao, Yushi Chen, Shuguang Xiang. Estimating heat capacities of liquid organic compounds based on elements and chemical bonds contribution[J]. 中国化学工程学报, 2023, 57(5): 30-38. |
[13] | Xiongzhuo Zhu, Dali Gao, Chong Yang, Chunjie Yang. A blast furnace fault monitoring algorithm with low false alarm rate: Ensemble of greedy dynamic principal component analysis-Gaussian mixture model[J]. 中国化学工程学报, 2023, 57(5): 151-161. |
[14] | Pengbao Lian, Lizhen Chen, Dan He, Guangyuan Zhang, Zishuai Xu, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in binary solvents[J]. 中国化学工程学报, 2023, 57(5): 173-182. |
[15] | Haoshan Duan, Xi Meng, Jian Tang, Junfei Qiao. Prediction of NOx concentration using modular long short-term memory neural network for municipal solid waste incineration[J]. 中国化学工程学报, 2023, 56(4): 46-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||