[1] BP Energy Outlook to 2035, BP Compang, 2016 edition https://www.bp.com/content/ dam/bp/pdf/energy-economics/energy-outlook-2016/bp-energy-outlook-2016.pdf (Last accessed date 23 February 2017)[2] A. Molino, M. Migliori, F. Nanna, Glucose gasification in near critical water conditions for both syngas production and green chemicals with a continuous process, Fuel 115 (2014) 41-45.[3] A. Molino, M. Migliori, F. Nanna, P. Tarquini, G. Braccio, Semi-continuous biomass gasification with water under sub critical conditions, Fuel 112 (2013) 249-253.[4] A. Molino, M. Migliori, D. Macri, V. Valerio, A. Villone, F. Nanna, P. Iovane, T. Marino, Process innovation via supercritical water gasification to improve the conventional plants performance in treating highly humid biomass, Renew. Energy 91 (2016) 451-455.[5] G. Bonura, F. Frusteri, C. Cannilla, G. Drago Ferrante, A. Aloise, E. Catizzone, M. Migliori, G. Giordano, Catalytic features of CuZnZr-zeolite hybrid systems for the direct CO2-to-DME hydrogenation reaction, Catal. Today 277 (2016) 48-54.[6] K. Barbera, P. Lanzafame, S. Perathoner, G. Centi, M. Migliori, A. Aloise, G. Giordano, HMF etherification using NH4-exchanged zeolites, NewJ. Chem. 40 (2016) 4300-4306.[7] S. Abate, P. Lanzafame, S. Perathoner, G. Centi, New sustainable model of biorefineries: biofactories and challenges of integrating bio- and solar refineries, ChemSusChem 8 (2015) 2854-2866.[8] V.R. Choudhary, A.K. Kinage, C. Sivadinarayana, P. Devadas, S.D. Sansare, M. Guisnet, H-Gallosilicate (MFI) propane aromatization catalyst: influence of Si/Ga ratio on acidity, activity and deactivation due to coking, J. Catal. 158 (1996) 34-50.[9] K. Nishi, S.-I. Komai, K. Inagaki, A. Satauma, T. Hattori, Structure and catalytic properties of Ga-MFI in propane aromatization, Appl. Catal. A Gen. 223 (2002) 187-189.[10] A. Bhan, W.N. Delgass, Propane aromatization over HZSM-5 and Ga/HZSM-5 catalysts, Catal. Rev. Sci. Eng. 50 (2008) 19-151.[11] S.B. Abdul Hamid, E.G. Derouane, P. Meriaudeau, C. Naccache, M.A. Yarmo, Effect of temperature on propane aromatisation by Ga/H-MFI(Si, Al) catalysts, Stud. Surf. Sci. Catal. 84 (1994) 2335-2344.[12] S.B. Abdul Hamid, E.G. Derouane, P. Meriaudeau, C. Naccache, Ageing of Ga/HMFI(Si,Al) propane aromatisation catalysts, Stud. Surf. Sci. Catal. 88 (1994) 183-190.[13] S.B. Abdul Hamid, E.G. Derouane, G. Demortier, J. Riga,M.A. Yarmo, State, activation, and migration of gallium in Ga H-MFI(Si,Al) propane aromatization catalysts, Appl. Catal. A Gen. 108 (1994) 85-96.[14] V.R. Choudhary, A.K. Kinage, T.V. Choudhary, Direct aromatization of natural gas over H-gallosilicate (MFI), H-galloaluminosilicate (MFI) and GaH-ZSM-5 zeolites, Appl. Catal. A Gen. 162 (1997) 239-248.[15] V.R. Choudhary, S.A.R. Mulla, S. Banerjie, Aromatization of n-heptane over H-AlMFI, Ga/H-AlMFI, H-GaMFI and H-GaAlMFI zeolite catalysts: influence of zeolitic acidity and non-framework gallium, Microporous Mesoporous Mater. 57 (2003) 317-322.[16] V. de O. Rodrigues, J.-G. Eon, A.C. Faro, Correlations between dispersion, acidity, reducibility, and propane aromatization activity of gallium species supported on HZSM5 zeolites, J. Phys. Chem. C 114 (2010) 4557-4567.[17] T.V. Choudhary, A. Kinage, S. Banerjee, V.R. Choudhary, Propane conversion to aromatics on highly active H-GaAlMFI: effect of thermal pretreatment, Energy Fuel 20 (2006) 919-922.[18] H. Xiao, J. Zhang, X.Wang, Q. Zhang, H. Xie, Y. Han, Y. Tan, A highly efficient Ga/ZSM- 5 catalyst prepared by formic acid impregnation and in situ treatment for propane aromatization, Catal. Sci. Technol. 5 (2015) 4081-4090.[19] G. Krishnamurthy, A. Bhan, W.N. Delgass, Identity and chemical function of gallium species inferred from microkinetic modeling studies of propane aromatization over Ga/HZSM-5 catalysts, J. Catal. 271 (2010) 370-385.[20] W. Wannapakdee, C. Wattanakit, V. Paluka, T. Yutthalekha, J. Limtrakul, One-pot synthesis of novel hierarchical bifunctional Ga/HZSM-5 nanosheets for propane aromatization, RSC Adv. 6 (2016) 2875-2881.[21] K.E. Ogunronbi, N. Al-Yassir, S. Al-Khattaf, New insights into hierarchical metalcontaining zeolites; synthesis and kinetic modelling of mesoporous galliumcontaining ZSM-5 for propane aromatization, J. Mol. Catal. A 406 (2015) 1-18.[22] T.V. Choudhary, A.K. Kinage, S. Banerjee, V.R. Choudhary, Influence of Si/Ga and Si/Al ratios on propane aromatization over highly active H-GaAlMFI, Catal. Commun. 7 (2006) 166-169.[23] A. Montes, G. Giannetto, A new way to obtain acid or bifunctional catalysts: V. Considerations on bifunctionality of the propane aromatization reaction over[Ga,Al]-ZSM-5 catalysts, Appl. Catal. A Gen. 197 (2000) 31-39.[24] B.S. Kwak, W.H.M. Sachtler, Effect of Ga/proton balance in Ga/HZSM-5 catalysts on C3 conversion to aromatics, J. Catal. 145 (1994) 456-463.[25] A. Matsuoka, S. Sakuma, M. Onodera, H. Kubota, Effects of Ga content and reaction pressure upon the aromatization of propane over H-Ga-Al-bimetallosilicate catalysts, J. Porous Mat. 20 (2013) 367-373.[26] V.R. Choudhary, C. Sivadinarayana, A.K. Kinage, P. Devadas, M. Guisnet, HGallosilicate (MFI) propane aromatization catalyst influence of calcination temperature on acidity, activity and deactivation due to coking, Appl. Catal. A Gen. 136 (1996) 125-142.[27] M. Guisnet, N.S. Gnep, Aromatization of propane over GaHMFI catalyst. Reaction scheme, nature of the dehydrogenating species and mode of coke formation, Catal. Today 31 (1996) 275-292.[28] V.R. Choudhary, C. Sivadinarayana, P. Devadas, S.D. Sansare, P.Magnoux,M. Guisnet, Characterization of coke on H-gallosilicate (MFI) propane aromatization catalyst. Influence of coking conditions on nature and removal of coke, Microporous Mesoporous Mater. 21 (1998) 91-101.[29] G. Giannetto, F. Dos Santos, R. Monque, R. Galasso, Z. Gabélica, Effect of aluminum and gallium concentration on the crystallization rate of TPA/MFI zeolites synthesized with MeNH2 in the absence of inorganic cations, Zeolites 15 (1995) 719-724.[30] M. Migliori, A. Aloise, G. Giordano, Methanol to dimethylether on H-MFI catalyst: the influence of the Si/Al ratio on kinetic parameters, Catal. Today 227 (2014) 138-143.[31] E. Catizzone, A. Aloise, M. Migliori, G. Giordano, Dimethyl ether synthesis via methanol dehydration: effect of zeolite structure, Appl. Catal. A Gen. 502 (2015) 215-220.[32] M. Migliori, A. Aloise, E. Catizzone, G. Giordano, Kinetic analysis ofmethanol to dimethyl ether reaction over H-MFI catalyst, Ind. Eng. Chem. Res. 53 (2014) 14885-14891.[33] E. Catizzone, A. Aloise, M. Migliori, G. Giordano, The effect of FER zeolite acid sites in methanol-to-dimethyl-ether catalytic dehydration, J. Energy Chem. 26 (2017) 406-415.[34] B. Zheng, W. Hua, Y. Yue, Z. Gao, Dehydrogenation of propane to propene over different polymorphs of gallium oxide, J. Catal. 232 (2005) 143-151.[35] L.M. Parker, D.M. Bibby, J.E. Patterson, Thermal decomposition of ZSM—5 and silicalite precursors, Zeolites 4 (1984) 168-174.[36] J. El-Hage-Al Asswad, N. Dewaele, J.B. Nagy, R.A. Hubert, Z. Gabelica, E.G. Derouane, F. Crea, R. Aiello, A. Nastro, Identification of different tetrapropylammonium cations occluded in ZSM-5 zeolite by combined thermal analysis (t.g.-d.t.a.) and 13C-n.m.r. spectroscopy, Zeolites 8 (1988) 221-227.[37] F. Frusteri, G. Bonura, C. Cannilla, G. Drago Ferrante, A. Aloise, E. Catizzone, M. Migliori, G. Giordano, Document stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation, Appl. Catal. B Environ. 176 (2015) 522-531.[38] V.R. Choudhary, P. Devadas, Influence of space velocity on product selectivity and distribution of aromatics and xylenes in propane aromatization over H-GaMFI zeolite, J. Catal. 172 (1997) 475-478.[39] Y.V. Joshi, K.T. Thomson, Embedded cluster (QM/MM) investigation of C6 diene cyclization in HZSM-5, J. Catal. 230 (2005) 440-463.[40] A. Bhan, S.-H. Hsu, G. Blau, J.M. Caruthers, V. Vankatasubramanian, W.N. Delgass, Microkinetic modeling of propane aromatization over HZSM-5, J. Catal. 235 (2005) 35-51.[41] P. Meriaudeau, C. Naccache, Dehydrocyclization of alkanes over zeolite-supported metal catalysts: monofunctional or bifunctional route, Catal. Rev. Sci. Eng. 39 (1997) 5-48.[42] M. Guisnet, P. Magnoux, Organic chemistry of coke formation, App. Catal. A Gen. 212 (2001) 83-96. |