[1] X. Xu, Y. Chen,W. Zhou, A perovskite electrocatalyst for efficient hydrogen evolution reaction, Adv. Mater. 28 (30) (2016) 6442-6448.[2] B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature 414 (6861) (2001) 345-352.[3] A.S. Arico, S. Srinivasan, Antonucci V. DMFCs: from fundamental aspects to technology development, Fuel Cells 1 (2) (2001) 133-161.[4] M.Winter, R.J. Brodd,What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 (3) (2004) 4245-4270.[5] Z.Wen, J. Liu, J. Li, Core/Shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells, Adv. Mater. 20 (4) (2008) 743-747.[6] L. Bai, H. Zhu, J.S. Thrasher, Synthesis and electrocatalytic activity of photoreduced platinum nanoparticles in a poly (ethylenimine) matrix, ACS Appl. Mater. Interfaces 1 (10) (2009) 2304-2311.[7] A.S. Polo, M.C. Santos, R.F.B. De Souza, Pt-Ru-TiO2 photoelectrocatalysts for methanol oxidation, J. Power Sources 196 (2) (2011) 872-876.[8] C. Xu, P.K. Shen, Electrochamical oxidation of ethanol on Pt-CeO2/C catalysts, J. Power Sources 142 (1) (2005) 27-29.[9] H. Song, X. Qiu, X. Li, TiO2 nanotubes promoting Pt/C catalysts for ethanol electrooxidation in acidic media, J. Power Sources 170 (1) (2007) 50-54.[10] C.T. Lin, H.J. Huang, J.J. Yang, A simple fabrication process of Pt-TiO2 hybrid electrode for photo-assistedmethanol fuel cells, Microelectron. Eng. 88 (8) (2011) 2644-2646.[11] C.S. Chen, F.M. Pan, Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation, Appl. Catal., B 91 (3) (2009) 663-669.[12] K. Drew, G. Girishkumar, K. Vinodgopal, Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation, J. Phys. Chem. B 109 (24) (2005) 11851-11857.[13] H. Zhang, W. Zhou, Y. Du, Enhanced electrocatalytic performance for methanol oxidation on Pt-TiO2/ITO electrode under UV illumination, Int. J. Hydrog. Energy 35 (24) (2010) 13290-13297.[14] W. Guo, F. Zhang, C. Lin, Z.L. Wang, Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange, Adv. Mater. 24 (35) (2012) 4761-4764.[15] N. Saito, K. Aoki, Y. Usui, M. Shimizu, Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development, Chem. Soc. Rev. 40 (7) (2011) 3824-3834.[16] D. Kong, H. Wang, Z. Lu, CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction, J. Am. Chem. Soc. 136 (13) (2014) 4897-4900.[17] L. Huang, D. Chen, Y. Ding, Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors, Nano Lett. 13 (7) (2013) 3135-3139.[18] Y.H. Lin, Y.C. Hsueh, C.C. Wang, Enhancing the photon-sensing properties of ZnO nanowires by atomic layer deposition of platinum, Electrochem. Solid-State Lett. 13 (12) (2010) K93-K95.[19] H.U. Lee, S.Y. Park, S.C. Lee, J.H. Seo, Highly photocatalytic performance of flexible 3 dimensional (3D) ZnO nanocomposite, Appl. Catal., B. 144 (83-89) (2014).[20] C. Gu, S. Xiong, Z.X. Zhong, Y. Wang, W.H. Xing, A promising carbon fiber-based photocatalyst with hierarchical structure for dye degradation, RSC Adv. 7 (36) (2017) 22234-22242.[21] H. Khan, I.K. Swati, Fe3+-doped anatase TiO2 with d-d transition, oxygen vacancies and Ti3+ centers: synthesis, characterization, UV-Vis photocatalytic andmechanistic studies, Ind. Eng. Chem. Res. 55 (23) (2016) 6619-6633.[22] S.G. Ullattil, P. Periyat, B. Naufal, M.A. Lazar, Self-doped ZnOmicrorods-high temperature stable oxygen deficient platforms for solar photocatalysis, Ind. Eng. Chem. Res. 55 (22) (2016) 6413-6421.[23] D. Banerjee, J.Y. Lao, D.Z. Wang, J.Y. Huang, Synthesis and photoluminescence studies on ZnO nanowires, Nanotechnology 15 (3) (2004) 404-409.[24] A.V. Rosario, E.C. Pereira, The role of Pt addition on the photocatalytic activity of TiO2 nanoparticles: the limit between doping and metallization, Appl. Catal., B. 144 (840-845) (2014).[25] X. Peng, S. Zhao, T.J. Omasta, Activity and durability of Pt-Ni nanocage electocatalysts in proton exchange membrane fuel cells, Appl. Catal., B. 203 (927-935) (2017).[26] M.K. Lee, H.F. Tu, Au-ZnO and Pt-ZnO films prepared by electrodeposition as photocatalysts, J. Electrochem. Soc. 155 (12) (2008) 758-762.[27] X.Gu, N. Yu, L. Zhang,Growth of TiO2 nanorod bundles on carbon fibers as flexible and weaveable photocatalyst/photoelectrode, RSC Adv. 5 (124) (2015) 102868-102876.[28] S. Sharma, A. Ganguly, P. Papakonstantinou, Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol, J. Phys. Chem. C 114 (45) (2010) 19459-19466.[29] G. Girishkumar, M. Rettker, R. Underhile, Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells, Langmuir 21 (18) (2005) 8487-8494.[30] Y. Li, W. Gao, L. Ci, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon 48 (4) (2010) 1124-1130.[31] Y.H. Lin, X.L. Cui, C.H. Yen, PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells, Langmuir 21 (24) (2005) 11474-11479.[32] N.A. Oliveira, R.R. Dias, M.M. Tusi, Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process, J. Power Sources 166 (1) (2007) 87-91.[33] B. Liu, J.H. Chen, C.H. Xiao, Preparation of Pt/MgO/CNT hybrid catalysts and their electrocatalytic properties for ethanol electro-oxidation, Energy Fuel 21 (3) (2007) 1365-1369. |