[1] J.R.V. Ommen, M.O. Coppens, C.M.V.D. Bleek, J.C. Schouten, Early warning of agglomeration in fluidized beds by attractor comparison, AIChE J. 46(11) (2000) 2183-2197.[2] J.H. Li, M. Kwauk, Exploring complex systems in chemical engineering-The multiscale methodology, Chem. Eng. Sci. 58(3-6) (2003) 521-535.[3] M. Horio, R. Clift, A note on terminology:'clusters' and 'agglomerates', Powder Technol. 70(3) (1992) 196.[4] Y. Xiong, S.E. Pratsinis, Formation of agglomerate particles by coagulation and sintering-Part I. A two-dimensional solution of the population balance equation, J. Aerosol Sci. 24(3) (1993) 283-300.[5] S. Heinrich, J. Blumschein, M. Henneberg, M. Ihlow, M. Peglow, L. Morl, Study of dynamic multi-dimensional temperature and concentration distributions in liquidsprayed fluidized beds, Chem. Eng. Sci. 58(23-24) (2003) 5135-5160.[6] F. Parveen, C. Briens, F. Berruti, J. Mcmillan, Effect of particle size, liquid content and location on the stability of agglomerates in a fluidized bed, Powder Technol. 237(3) (2013) 376-385.[7] D.I.W. Pietsch, Agglomeration Processes:Phenomena, Technologies, Equipment, Wiley, 2008.[8] Z. Mansourpour, N. Mostoufi, R. Sotudeh-Gharebagh, Investigating agglomeration phenomena in an air-polyethylene fluidized bed using DEM-CFD approach, Chem. Eng. Res. Des. 92(1) (2014) 102-118.[9] S.V. Manyele, J.H. Parssinen, J.X. Zhu, Characterizing particle aggregates in a highdensity and high-flux CFB riser, Chem. Eng. J. 88(1-3) (2002) 151-161.[10] R. Cocco, F. Shaffer, R. Hays, S.B.R. Karri, T. Knowlton, Particle clusters in and above fluidized beds, Powder Technol. 203(1) (2010) 3-11.[11] M. Bartels, J. Nijenhuis, F. Kapteijn, J.R.V. Ommen, Detection of agglomeration and gradual particle size changes in circulating fluidized beds, Powder Technol. 202(1) (2010) 24-38.[12] Y.J. Cao, Z.J. Shi, B.Z. Yang, C.G. Duan, J.D. Wang, Y.R. Yang, Detection of agglomeration in gas-phase polymerization fluidized-bed by using sound wave technique, Petrochem. Technol. 35(8) (2006) 766-769.[13] T. Zhou, The calculation model of agglomerate sizes in fluidized beds of cohesive particles, Chem. React. Eng. Technol. 15(1) (1999) 44-51.[14] S. Matsuda, H. Hatano, M. Tomoya, A. Tsutsumi, Modeling for size reduction of agglomerates in nanoparticle fluidization, AICHE J. 50(11) (2004) 2763-2771.[15] S. Morooka, K. Kusakabe, A. Kobata, Y. Kato, Fluidization state of ultrafine powders, J. Chem. Eng. Jpn. 21(1) (1988) 41-46.[16] K. Kuwagi, M. Horio, A numerical study on agglomerate formation in a fluidized bed of fine cohesive particles, Chem. Eng. Sci. 57(22-23) (2002) 4737-4744.[17] T. Mikami, H. Kamiya, M. Horio, Numerical simulation of cohesive powder behavior in a fluidized bed, Chem. Eng. Sci. 53(10) (1998) 1927-1940.[18] Y. Tatemoto, Y. Mawatari, K. Noda, Numerical simulation of cohesive particle motion in vibrated fluidized bed, Chem. Eng. Sci. 59(2) (2004) 437-447.[19] P.B. Tran, R.J. Miller, Onset of cohesive behavior in gas fluidized beds:A numerical study using DEM simulation, Chem. Eng. Sci. 56(14) (2001) 4433-4438.[20] L.Q. Lu, J. Xu, W. Ge, Y.P. Yue, X.H. Liu, J.H. Li, EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows, Chem. Eng. Sci. 120(2014) 67-87.[21] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed, Powder Technol. 77(1) (1993) 79-87.[22] B.P.B. Hoomans, J.A.M. Kuipers, W.J. Briels, W.P.M.V. Swaaij, Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed:A hardsphere approach, Chem. Eng. Sci. 51(1) (1996) 99-118.[23] B.H. Xu, A.B. Yu, Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics, Chem. Eng. Sci. 52(16) (1997) 2785-2809.[24] P.A. Cundall, O.D.L. Strack, A discrete numerical mode for granular assemblies, Geotechnique 29(1) (1979) 47-65.[25] P.A. Hartley, G.D. Parfitt, L.B. Pollack, The role of the van der Waals force in the agglomeration of powders containing submicron particles, Powder Technol. 42(1) (1985) 35-46.[26] L.J. Mclaughlin, M.J. Rhodes, Prediction of fluidized bed behaviour in the presence of liquid bridges, Powder Technol. 114(1) (2001) 213-223.[27] J.P.K. Seville, H. Silomon-Pflug, P.C. Knight, Modelling of sintering in high temperature gas fluidisation, Powder Technol. 97(2) (1998) 160-169.[28] J.E. Galvin, S. Benyahia, The effect of cohesive forces on the fluidization of aeratable powders, AICHE J. 60(2) (2014) 473-484.[29] H.C. Hamaker, The London-van der Waals attraction between spherical particles, Physica 4(10) (1937) 1058-1072.[30] C.Y. Wen, Y.H. Yu, Mechanics of fluidization, Chem. Eng. Prog. Symp. Ser. 62(1966) 100-111.[31] J. Xu, H.B. Qi, X.J. Fang, L.Q. Lu, W. Ge, X.W. Wang, M. Xu, F.G. Chen, X.F. He, J.H. Li, Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing, Particuology 9(4) (2011) 446-450.[32] W. Ge, J. Xu, Q.G. Xiong, X.W. Wang, F.G. Chen, L.M. Wang, C.F. Hou, M. Xu, J.H. Li, Multi-scale Continuum-particle Simulation on CPU-GPU Hybrid Supercomputer, Springer, Berlin Heidelberg, 2013.[33] J.H. Chen, R.T. Zhou, N. Yang, High concentrated liquid-solid flow in 2D bed for PE fluff swelling research, Technical Report, Institute of Process Engineering, CAS, 2015.[34] R.Y. Yang, A.B. Yu, S.K. Choi, M.S. Coates, H.K. Chan, Agglomeration of fine particles subjected to centripetal compaction, Powder Technol. 184(1) (2007) 122-129.[35] D.Y. Liu, B.G.M. Van Wachem, R.F. Mudde, X.P. Chen, J.R. Van Ommen, An adhesive CFD-DEM model for simulating nanoparticle agglomerate fluidization, AICHE J. 62(7) (2016) 2259-2270.[36] Y. Yang, Experiments and Theory on Gas and Cohesive Particles Flow Behavior and Agglomeration in the Fluidized bed System, PhD Thesis, Illinois Institute of Technology., 1991[37} R. Fan, D.L. Marchisio, R.O. Fox, Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds, Powder Technol. 139(2004) 7-20.[38] K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids, Pros. R. Soc. Lond. A. 324(1971) 301-313. |