[1] J.F. He, Y.M. Zhao, Y.Q. He, Z.F. Luo, C.L. Duan, Comparison of coal separation characteristics based on different separating approaches in dry coal beneficiation flowsheet, J. Cent. South Univ. 22(2015) 1651-1659.[2] L.Q. Luo, H. Huang, Y.F. Yu, Characterization and technology of fast reducing roasting for fine iron materials, J. Cent. South Univ. 19(8) (2012) 2272-2278.[3] C. Zhu, Q. Yu, R.N. Dave, R. Pfeffer, Gas fluidization characteristics of nanoparticle agglomerates, AIChE J. 51(2) (2005) 426-439.[4] C.B. Luo, W. Zheng, L.P. Xu, M.X. Pan, T. Zhou, Simulation of bubbling fluidized beds with cohesive particles by incorporating a novel structure-based drag model into the two-fluid model, Can. J. Chem. Eng. 95(2017) 1999-2011.[5] P. Zeng, T. Zhou, J.S. Yang, Behavior of mixtures of nano-particles in magnetically assisted fluidized bed, Chem. Eng. Process. 47(1) (2008) 101-108.[6] L. Zhou, R.L. Diao, T. Zhou, H. Kage, Y. Mawatari, Characteristics of non-magnetic nanoparticles in magnetically fluidized bed by adding coarse magnets, J. Cent. S. Univ. Technol. 18(5) (2011) 1383-1388.[7] L.Y. Song, T. Zhou, J.S. Yang, Fluidization behavior of nano-particles by adding coarse particles, Adv. Powder Technol. 20(4) (2009) 366-370.[8] P. Ammendola, R. Chirone, F. Raganti, Fluidization of binary mixtures of nanoparticles under the effect of acoustic fields, Adv. Powder Technol. 22(2) (2011) 174-183.[9] C.D. Si, Q.J. Guo, Fluidization characteristics of binary mixtures of biomass and quartz sand in an acoustic fluidized bed, Ind. Eng. Chem. Res. 47(23) (2008) 9773-9782.[10] C.B. Xu, J. Zhu, Parametric study of fine particle fluidization under mechanical vibration, Powder Technol. 161(2) (2006) 135-144.[11] H. Wang, T. Zhou, J.S. Yang, H. Kage, Y. Mawatari, Model for calculation of agglomerate sizes of nanoparticles in a vibro-fluidized bed, Chem. Eng. Technol. 33(3) (2010) 388-394.[12] L. Meili, R.V. Daleffe, J.T. Freire, Fluid dynamics of fluidized and vibrofluidized beds operating with Geldart C particles, Chem. Eng. Technol. 35(9) (2012) 1649-1656.[13] X.Z. Liang, Y.M. Zhou, L.X. Zou, J.R. Kong, J. Wang, T. Zhou, Fluidization behavior of binary iron-containing nanoparticle mixtures in a vibro-fluidized bed, Powder Technol. 304(2016) 101-107.[14] T. Zhou, H.Z. Li, Estimation of agglomerate size for cohesive particles during fluidization, Powder Technol. 101(1) (1999) 57-62.[15] J. Wang, B. Xu, T. Zhou, X.Z. Liang, Agglomeration mechanism of nanoparticles by adding coarse fluid catalytic particles, Chem. Eng. Technol. 39(8) (2016) 1490-1496.[16] H.Z. Li, R. Legros, M.H. Brereton, J.R. Grace, J. Chaouki, Hydrodynamic behaviour of aerogel powders in high-velocity fluidized beds, Powder Technol. 60(2) (1990) 121-129.[17] A. Ajbar, K. Alhumazi, M. Asif, Improvement of the fluidizability of cohesive powders through mixing with small proportions of group a particles, Can. J. Chem. Eng. 83(6) (2005) 930-943.[18] S.M. Bhavaraju, T. Russell, W. Blanch, The design of gas sparged devices for viscous liquid systems, AIChE J. 24(3) (1978) 454-466.[19] H. Duan, X.Z. Liang, T. Zhou, J. Wang, W.J. Tang, Fluidization of mixed SiO2 and ZnO nanoparticles by adding coarse particles, Powder Technol. 267(2014) 315-321.[20] R.W. Mei, H. Shang, J.F. Klausner, E. Kallman, A contact model for the effect of particle coating on improving the flowability of cohesive powders, KONA Powder Part. J. 15(1997) 132-141.[21] J. Yang, A. Sliva, A. Banerjee, R.N. Dave, R. Pfeffer, Dry particle coating for improving the flowability of cohesive powders, Powder Technol. 158(1-3) (2005) 21-33. |