[1] D. Lietze, Crimped metal ribbon flame arrestors for the protection of gas measurement systems, J. Loss Prev. Process Ind. 15(1) (2002) 29-35.[2] A.A. Pekalski, J.F. Zevenbergen, S.M. Lemkowitz, H.J. Pasman, A review of explosion prevention and protection systems suitable as ultimate layer of protection in chemical process installations, Process Saf. Environ. Prot. 83(1) (2005) 1-17.[3] P. Bauer, Experimental investigation on flame and detonation quenching:applicability of static flame arresters, J. Loss Prev. Process Ind. 18(2) (2005) 63-68.[4] C. Kersten, H. Forster, Investigation of deflagrations and detonations in pipes and flame arresters by high-speed framing, J. Loss Prev. Process Ind. 17(1) (2004) 43-50.[5] Y. Okawa, C. Youn, T. Kagawa, A study of the characteristics of flow rate and extinction in a flame arrester with radial slit structure, J. Loss Prev. Process Ind. 25(2) (2012) 242-249.[6] L. Wang, H. Ma, Z. Shen, The quenching of propane deflagrations by crimped ribbon flame arrestors, J. Loss Prev. Process Ind. 43(2016) 567-574.[7] A.C. Benim, S. Iqbal, W. Meier, F. Joos, A. Wiedermann, Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor, Appl. Therm. Eng. 110(2017) 202-212.[8] M. Choi, Y. Sung, M. Won, Y. Park, M. Kim, G. Choi, D. Kim, Effect of fuel distribution on turbulence and combustion characteristics of a micro gas turbine combustor, J. Ind. Eng. Chem. 48(2017) 24-35.[9] J. Wan, W. Yang, A. Fan, Y. Liu, H. Yao, W. Liu, Y. Du, D. Zhao, A numerical investigation on combustion characteristics of H2/air mixture in a micro-combustor with wall cavities, Int. J. Hydrog. Energy 39(15) (2014) 8138-8146.[10] V. Giovannoni, R.N. Sharma, R.R. Raine, Premixed combustion of methane-air mixture stabilized over porous medium:A 2D numerical study, Chem. Eng. Sci. 152(2016) 591-605.[11] X. Li, J. Zhang, H. Yang, L. Jiang, X. Wang, D. Zhao, Combustion characteristics of nonpremixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube, Appl. Therm. Eng. 112(2017) 296-303.[12] S. Raimondeau, D. Norton, D.G. Vlachos, R.I. Masel, Modeling of high-temperature microburners, Proc. Combust. Inst. 29(1) (2002) 901-907.[13] M. Yu, K. Zheng, T. Chu, Gas explosion flame propagation over various hollowsquare obstacles, J. Nat. Gas Sci. Eng. 30(2016) 221-227.[14] J. Miao, C.W. Leung, C.S. Cheung, Z. Huang, W. Jin, Effect of H2 addition on OH distribution of LPG/Air circumferential inverse diffusion flame, Int. J. Hydrog. Energy 41(22) (2016) 9653-9663.[15] C.M.R. Vendra, J.X. Wen, V.H.Y. Tam, Numerical simulation of turbulent flame-wall quenching using a coherent flame model, J. Loss Prev. Process Ind. 26(2) (2013) 363-368.[16] M. Bin Shams, E.M. Elkanzi, Z. Ramadhan, S. Rahma, M. Khamis, Gas turbine inlet air cooling system for enhancing propane recovery in a gas plant:Theoretical and cost analyses, J. Nat. Gas Sci. Eng. 43(2017) 22-32.[17] I. Dincer, C. Zamfirescu, A review of novel energy options for clean rail applications, J. Nat. Gas Sci. Eng. 28(2016) 461-478.[18] R.K. Abdrakhmanov, B.F. Boyarshinov, S.Y. Fedorov, Investigation of the local parameters of a cellular propane/butane/air flame, Int. J. Heat Mass Transf. 109(2017) 1172-1180.[19] B. Mohammadreza, T. Sadegh, F.L. Morteza, Experimental study on the effects of mixture flow rate, equivalence ratio, oxygen enhancement, and geometrical parameters on propane-air premixed flame dynamics in non-adiabatic meso-scale reactors, Energy 121(2017) 657-675.[20] M. Cathonnet, Chemical kinetic modeling of combustion from 1969 to 2019, Combust. Sci. Technol. 98(4-6) (1994) 265-279.[21] J. Simmie, Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci. 29(6) (2003) 599-634.[22] M. Cord, B. Husson, H. Lizardo, C. Juan, O. Herbinet, P.A. Glaude, R. Fournet, B. Sirjean, B.L. Frederique, R.L. Manuel, Z. Wang, Study of the low temperature oxidation of propane, J. Phys. Chem. A 116(50) (2012) 12214-12,228.[23] W. Jones, R. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combust. Flame 73(3) (1988) 233-249.[24] Y. Jiang, R. Qiu, A reduced mechanism for flame inhibition by phosphorus-containing compounds based on level of importance analysis, Chin. J. Chem. Eng. 18(5) (2010) 711-720.[25] M. Bahmani, J. Shariati, A.N. Rouzbahani, Simulation and optimization of an industrial gas condensate stabilization unit to modify LPG and NGL production with minimizing CO2 emission to the environment, Chin. J. Chem. Eng. 25(3) (2017) 338-346.[26] N. Zhang, T. Qiu, B. Chen, CFD simulation of propane cracking tube using detailed radical kinetic mechanism, Chin. J. Chem. Eng. 21(12) (2013) 1319-1331.[27] Z. Mansouri, M. Aouissi, T. Boushaki, Numerical computations of premixed propane flame in a swirl-stabilized burner:Effects of hydrogen enrichment, swirl number and equivalence ratio on flame characteristics, Int. J. Hydrog. Energy 41(22) (2016) 9664-9678.[28] S.A. Konakov, S.V. Dzyubanenko, V.V. Krzhizhanovskaya, Computer simulation oapproach in development of propane-air combustor microreactor, Procedia Comput. Sci. 101(2016) 76-85.[29] C. Luo, J. Zanganeh, B. Moghtaderi, A 3D numerical study on the effects of obstacles on flame propagation in a cylindrical explosion vessel connected to a vented tube, J. Loss Prev. Process Ind. 44(2016) 53-61.[30] A. Gutkowski, Numerical analysis of effect of ignition methods on flame behavior during passing through a sudden contraction near the quenching conditions, Appl. Therm. Eng. 54(1) (2013) 202-211.[31] Q. Huang, W. Zhang, C. Yang, Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction, Chem. Eng. Sci. 135(2015) 441-451.[32] B. Lauder, D. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London,UK, 1972.[33] B.F. Magnussen, B.H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symp. Combust. 16(1) (1977) 719-729.[34] D. Spalding, Mixing and chemical reaction in steady confined turbulent flames, Symp. Combust. 13(1) (1971) 649-657.[35] Q. Huang, T. Liu, J. Yang, L. Yao, L. Gao, Evaluation of radiative transfer using the finite volume method in cylindrical photoreactors, Chem. Eng. Sci. 66(17) (2011) 3930-3940.[36] Q. Huang, L. Yao, T. Liu, J. Yang, Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum, Chem. Eng. Sci. 84(2012) 718-726.[37] H.K. Versteeg, W. Malalasekera, An Introcuction to Computional Fluid Dynamics:The Finite Volume Method, Wiley, New York, 1995.[38] Q. Huang, C. Yang, G.Z. Yu, Z. Mao, 3-D simulations of an internal airlift loop reactor using a steady two-fluid model, Chem. Eng. Technol. 30(7) (2007) 870-879.[39] Q. Huang, C. Yang, G. Yu, Z.S. Mao, Sensitivity study on modeling an internal airlift loop reactor using a steady 2D two-fluid model, Chem. Eng. Technol. 31(12) (2008) 1790-1798.[40] Q. Huang, C. Yang, G. Yu, Z. Mao, CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model, Chem. Eng. Sci. 65(20) (2010) 5527-5536.[41] K. Zhou, Z. Li, Z. Zhou, The quenching of deflagration by crimped ribbon flame arresters, J. Chin. Univ. Sci. Technol. 27(4) (1997) 449-454. |