[1] A. Balde, M. Aider, Impact of cryoconcentration on casein micelle size distribution, micelles inter-distance, and flow behavior of skim milk during refrigerated storage, Innovative Food Sci. Emerg. Technol. 34(2016) 68-76.
[2] E. Hernandez, M. Raventos, J.M. Auleda, et al., Freeze concentration of must in a pilot plant falling film cryoconcentrator, Innovative Food Sci. Emerg. Technol. 11(1) (2010) 130-136.
[3] A. Chabarov, M. Aider, Mathematical modeling and experimental validation of the mass transfer during unidirectional progressive cryoconcentration of skim milk, Innovative Food Sci. Emerg. Technol. 21(2014) 151-159.
[4] O.L.A. Flesland, Freeze Concentratton by layer crystallization, Dry. Technol. 13(8-9) (1995) 1713-1739.
[5] O. Miyawaki, L. Liu, Y. Shirai, et al., Tubular ice system for scale-up of progressive freeze-concentration, J. Food Eng. 69(1) (2005) 107-113.
[6] K. Kawasaki, A. Matsuda, H. Kadota, Freeze concentration of equal molarity solutions with ultrasonic irradiation under constant freezing rate:Effect of solute, Chem. Eng. Res. Des. 84(2) (2006) 107-112.
[7] M. Aider, D. de Halleux, Cryoconcentration technology in the bio-food industry:Principles and applications, LWT Food Sci. Technol. 42(3) (2009) 679-685.
[8] G. Petzold, P. Orellana, J. Moreno, et al., Vacuum-assisted block freeze concentration applied to wine, Innovative Food Sci. Emerg. Technol. 36(2016) 330-335.
[9] L. Otero, P. Sanz, B. Guignon, et al., Pressure-shift nucleation:A potential tool for freeze concentration of fluid foods, Innovative Food Sci. Emerg. Technol. 13(2012) 86-99.
[10] B. Habib, M. Farid, Heat transfer and operating conditions for freeze concentration in a liquid-solid fluidized bed heat exchanger, Chem. Eng. Process. Process Intensif. 45(8) (2006) 698-710.
[11] O. Miyawaki, M. Gunathilake, C. Omote, et al., Progressive freeze-concentration of apple juice and its application to produce a new type apple wine, J. Food Eng. 171(2016) 153-158.
[12] O. Lorain, P. Thiebaud, E. Badorc, et al., Potential of freezing in wastewater treatment:Soluble pollutant applications, Water Res. 35(2) (2001) 541-547.
[13] F.L. Moreno, C.M. Robles, Z. Sarmiento, et al., Effect of separation and thawing mode on block freeze-concentration of coffee brews, Food Bioprod. Process. 91(4) (2013) 396-402.
[14] F.L. Moreno, M.X. Quintanilla-Carvajal, L.I. Sotelo, et al., Volatile compounds, sensory quality and ice morphology in falling-film and block freeze concentration of coffee extract, J. Food Eng. 166(2015) 64-71.
[15] P. Orellana-Palma, G. Petzold, L. Pierre, et al., Protection of polyphenols in blueberry juice by vacuum-assisted block freeze concentration, Food Chem. Toxicol. 109(2017) 1093-1102.
[16] P. Widehem, N. Cochet, Pseudomonas syringae as an ice nucleator-application to freeze-concentration, Process Biochem. 39(4) (2003) 405-410.
[17] Y. Shirai, T. Sugimoto, M. Hashimoto, et al., Mechanism of ice growth in a batch crystallizer with an external cooler for freeze concentration, Agric. Biol. Chem. 51(9) (1987) 2359-2366.
[18] A. Kobayashi, Y. Shirai, K. Nakanishi, et al., A method for making large agglomerated ice crystals for freeze concentration, J. Food Eng. 27(1) (1996) 1-15.
[19] S. Samsuri, N.A. Amran, N. Yahya, et al., Review on progressive freeze concentration designs, Chem. Eng. Commun. 203(3) (2016) 345-363.
[20] H.J. Lane, P.J. Heggs, Extended surface heat transfer-the dovetail fin, Appl. Therm. Eng. 25(16) (2005) 2555-2565.
[21] S. Samsuri, N.A. Amran, M. Jusoh, Spiral finned crystallizer for progressive freeze concentration process, Chem. Eng. Res. Des. 104(2015) 280-286.
[22] J.M. Auleda, M. Raventos, E. Hernandez, Calculation method for designing a multiplate freeze-concentrator for concentration of fruit juices, J. Food Eng. 107(1) (2011) 27-35.
[23] C.J. Geankoplis, Transport Processes and Separation Process Principles (Includes Unit Operations), Prentice Hall, Upper Saddle River, New Jersey, 2003.
[24] H. Ghassabzadeh, J.T. Darian, P. Zaheri, Experimental study and kinetic modeling of kerosene thermal cracking, J. Anal. Appl. Pyrolysis 86(1) (2009) 221-232.
[25] S. Lucas, M.P. Calvo, C. Palencia, et al., Mathematical model of supercritical CO2 adsorption on activated carbon:Effect of operating conditions and adsorption scaleup, J. Supercrit. Fluids 32(1-3) (2004) 193-201. |