[1] G.N. Li, H. Zhou, K.F. Cen, Emission characteristics and combustion instabilities in an oxy-fuel swirl-stabilized combustor, J. Zhejiang Univ. Sci. A 9(2008) 1582-1589. [2] M. De Giorgi, S. Campilongo, A. Ficarella, G. De Falco, M. Commodo, A. D'Anna, Pollutant formation during the occurrence of flame instabilities under very-lean combustion conditions in a liquid-fuel burner, Energies. 10(3) (2017) 352. [3] H. Moghadasi, N. Malekian, M. Bidabadi, H. Rasam, Analytical modeling of counterflow non-premixed organic particles combustion:Thermal radiation effects, Fuel Process. Technol. 185(2019) 139-150. [4] H. Zhang, M. Zhou, X. Lan, A fuzzy synthetic evaluation method of flame stability based on time-frequency analysis and higher-order statistics, Energies. 12(7) (2019) 1196. [5] Z. Xi, Z. Fu, X. Hu, S. Sabir, Y. Jiang, An experimental investigation on flame pulsation for a swirl non-premixed combustion, Energies 11(7) (2018) 1757. [6] S. Candel, D. Durox, T. Schuller, J.F. Bourgouin, J.P. Moeck, Dynamics of swirling flames, Ann. Rev. Fluid. Mech. 46(2014) 147-173. [7] L.Y. Gicquel, G. Staffelbach, T. Poinsot, Large eddy simulations of gaseous flames in gas turbine combustion chambers, Prog. Energ. Combust. 38(2012) 782-817. [8] D.G. Sloan, P.J. Smith, L.D. Smoot, Modeling of swirl in turbulent flow systems, Prog. Energ. Combust. 12(1986) 163-250. [9] A.C. Benim, S. Iqbal, W. Meier, F. Joos, A. Wiedermann, Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor, Appl. Therm. Eng. 110(2017) 202-212. [10] Y.M. Al-Abdeli, A.R. Masri, Review of laboratory swirl burners and experiments for model validation, Exp. Thermal Fluid Sci. 69(2015) 178-196. [11] A. Bohlin, E. Nordström, H. Carlsson, X.S. Bai, P.E. Bengtsson, Pure rotational CARS measurements of temperature and relative O2 concentration in a low swirl turbulent premixed flame, P. Combust. Inst. 34(2013) 3629-3636. [12] H. Moghadasi, A. Rahbari, M. Bidabadi, A.K. Poorfar, V. Farhangmehr, A mathematical investigation of premixed lycopodium dust flame in a small furnace, J. Energy Resour. Technol. 141(2019) 1-6. [13] A. Frassoldati, P. Sharma, A. Cuoci, T. Faravelli, E. Ranzi, Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow, Appl. Therm. Eng. 30(2010) 376-383. [14] L. Ziani, A. Chaker, K. Chetehouna, A. Malek, B. Mahmah, Numerical simulations of non-premixed turbulent combustion of CH4/H2 mixtures using the PDF approach, Int. J. Hydrogen Energ. 38(2013) 8597-8603. [15] L. Ziani, A. Chaker, Ambient pressure effect on non-premixed turbulent combustion of CH4-H2 mixture, Int. J. Hydrogen Energ. 41(2016) 11842-11847. [16] C. Pfeiler, H. Raupenstrauch, Application of different turbulence models to study the effect of local anisotropy for a non-premixed piloted methane flame, Comput-Aided Chem. Eng. 28(2010) 49-54. [17] Z. Ren, G.M. Goldin, V. Hiremath, S.B. Pope, Simulations of a turbulent non-premixed flame using combined dimension reduction and tabulation for combustion chemistry, Fuel. 105(2013) 636-644. [18] Khaldi, N., Mhiri, H. and Bournot, P. A comparative study of turbulence models performance for a 300 MWe tangentially fired pulverized-coal furnace. In 2014 5th International Renewable Energy Congress, IREC. 2014, 1-6. [19] W. Jerzak, M. Kuźnia, Experimental study of impact of swirl number as well as oxygen and carbon dioxide content in natural gas combustion air on flame flashback and blow-off, J. Nat. Gas Sci. Eng. 29(2016) 46-54. [20] C.O. Iyogun, M. Birouk, J.A. Kozinski, Experimental investigationoftheeffectof fuel nozzle geometry on the stability of a swirling non-premixed methane flame, Fuel. 90(2011) 1416-1423. [21] S. Seepana, S. Jayanti, Experimental studies of flame extinction in a swirl-stabilized oxy-fuel burner, Fuel. 93(2012) 75-81. [22] H. El-Asrag, S. Menon, Large eddy simulation of bluff-body stabilized swirling nonpremixed flames, Proc. Combust. Inst. 31(2007) 1747-1754. [23] H. Zhang, E. Mastorakos, Modelling local extinction in Sydney swirling nonpremixed flames with LES/CMC, P. Combust. Inst. 36(2017) 1669-1676. [24] A.E. German, T. Mahmud, Modelling of non-premixed swirl burner flows using a Reynolds-stress turbulence closure, Fuel. 84(2005) 583-594. [25] W.P. Jones, J.H. Whitelaw, Calculation methods for reacting turbulent flows:A review, Combust Flame. 48(1982) 1-26. [26] B.E. Launder, Spalding, D.B. Mathematical models of turbulence Academic Press, New York, 1972. [27] V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence, I. Basic theory. J. Sci. Comput. 1(1986) 3-51. [28] B.E. Launder, G.J. Reece, W. Rodi, Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mech. 68(1975) 537-566. [29] M.M. Gibson, B.E. Launder, Ground effects on pressure fluctuations in the atmospheric boundary layer, J. Fluid Mech. 86(1978) 491-511. [30] B.E. Launder, Second-moment closure:present… and future, Int. J. Heat Fluid Fl. 10(1989) 282-300. [31] ANSYS Inc, ANSYS Fluent Theory Guide, Release 15.0, USA, 2013. [32] G.D. Raithby, E.H. Chui, A finite-volume method for predicting a radiant heat transfer in en-closures with participating media, J. Heat Trans. 112(1990) 415-423. [33] H. Chui, G.D. Raithby, Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method, Numer. Heat Transfer Part B 23(1993) 269-288. [34] J.Y. Murthy, S.R. Mathur, A finite volume method for radiative heat transfer using unstructured meshes, J. Thermodynam. Heat Transfer. 12(1998) 313-321. [35] P. Cheng, Two-dimensional radiating gas flow by a moment method, AIAA J. 2(1964) 1662-1664. [36] R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, Hemisphere Publishing Corporation, Washington, DC, 1992. [37] E. Khodabandeh, M. Ghaderi, A. Afzalabadi, A. Rouboa, A. Salarifard, Parametric study of heat transfer in an electric arc furnace and cooling system, Appl. Therm. Eng. 123(2017) 1190-1200. [38] E. Khodabandeh, M. Pourramezan, M.H. Pakravan, Effects of excess air and preheating on the flow pattern and efficiency of the radiative section of a fired heater, Appl. Therm. Eng. 105(2016) 537-548. [39] E. Khodabandeh, A. Rahbari, M.A. Rosen, Z.N. Ashrafi, O.A. Akbari, A.M. Anvari, Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace, Energ. Convers. Manage. 148(2017) 43-56. |